105,122 research outputs found

    Computing with Metabolic Machines

    Get PDF
    If Turing were a first-year graduate student interested in computers, he would probably migrate into the field of computational biology. During his studies, he presented a work about a mathematical and computational model of the morphogenesis process, in which chemical substances react together. Moreover, a protein can be thought of as a computational element, i.e. a processing unit, able to transform an input into an output signal. Thus, in a biochemical pathway, an enzyme reads the amount of reactants (substrates) and converts them in products. In this work, we consider the biochemical pathway in unicellular organisms (e.g. bacteria) as a living computer, and we are able to program it in order to obtain desired outputs. The genome sequence is thought of as an executable code specified by a set of commands in a sort of ad-hoc low-level programming language. Each combination of genes is coded as a string of bits y ∈ {0, 1} L, each of which represents a gene set. By turning off a gene set, we turn off the chemical reaction associated with it. Through an optimal executable code stored in the “memory ” of bacteria, we are able to simultaneously maximise the concentration of two or more metabolites of interest. Finally, we use the Robustness Analysis and a new Sensitivity Analysis method to investigate both the fragility of the computation carried out by bacteria and the most important entities in the mathematical relations used to model them. 1 Introduction: From Turin

    Computing the shortest elementary flux modes in genome-scale metabolic networks

    Get PDF
    This article is available open access through the publisher’s website through the link below. Copyright @ The Author 2009.Motivation: Elementary flux modes (EFMs) represent a key concept to analyze metabolic networks from a pathway-oriented perspective. In spite of considerable work in this field, the computation of the full set of elementary flux modes in large-scale metabolic networks still constitutes a challenging issue due to its underlying combinatorial complexity. Results: In this article, we illustrate that the full set of EFMs can be enumerated in increasing order of number of reactions via integer linear programming. In this light, we present a novel procedure to efficiently determine the K-shortest EFMs in large-scale metabolic networks. Our method was applied to find the K-shortest EFMs that produce lysine in the genome-scale metabolic networks of Escherichia coli and Corynebacterium glutamicum. A detailed analysis of the biological significance of the K-shortest EFMs was conducted, finding that glucose catabolism, ammonium assimilation, lysine anabolism and cofactor balancing were correctly predicted. The work presented here represents an important step forward in the analysis and computation of EFMs for large-scale metabolic networks, where traditional methods fail for networks of even moderate size. Contact: [email protected] Supplementary information: Supplementary data are available at Bioinformatics online (http://bioinformatics.oxfordjournals.org/cgi/content/full/btp564/DC1).Fundação Calouste Gulbenkian, Fundação para a Ciência e a Tecnologia (FCT) and Siemens SA Portugal

    MEMO: A Method for Computing Metabolic Modules for Cell-Free Production Systems

    No full text

    The protein cost of metabolic fluxes: prediction from enzymatic rate laws and cost minimization

    Full text link
    Bacterial growth depends crucially on metabolic fluxes, which are limited by the cell's capacity to maintain metabolic enzymes. The necessary enzyme amount per unit flux is a major determinant of metabolic strategies both in evolution and bioengineering. It depends on enzyme parameters (such as kcat and KM constants), but also on metabolite concentrations. Moreover, similar amounts of different enzymes might incur different costs for the cell, depending on enzyme-specific properties such as protein size and half-life. Here, we developed enzyme cost minimization (ECM), a scalable method for computing enzyme amounts that support a given metabolic flux at a minimal protein cost. The complex interplay of enzyme and metabolite concentrations, e.g. through thermodynamic driving forces and enzyme saturation, would make it hard to solve this optimization problem directly. By treating enzyme cost as a function of metabolite levels, we formulated ECM as a numerically tractable, convex optimization problem. Its tiered approach allows for building models at different levels of detail, depending on the amount of available data. Validating our method with measured metabolite and protein levels in E. coli central metabolism, we found typical prediction fold errors of 3.8 and 2.7, respectively, for the two kinds of data. ECM can be used to predict enzyme levels and protein cost in natural and engineered pathways, establishes a direct connection between protein cost and thermodynamics, and provides a physically plausible and computationally tractable way to include enzyme kinetics into constraint-based metabolic models, where kinetics have usually been ignored or oversimplified

    A structured approach for the engineering of biochemical network models, illustrated for signalling pathways

    Get PDF
    http://dx.doi.org/10.1093/bib/bbn026Quantitative models of biochemical networks (signal transduction cascades, metabolic pathways, gene regulatory circuits) are a central component of modern systems biology. Building and managing these complex models is a major challenge that can benefit from the application of formal methods adopted from theoretical computing science. Here we provide a general introduction to the field of formal modelling, which emphasizes the intuitive biochemical basis of the modelling process, but is also accessible for an audience with a background in computing science and/or model engineering. We show how signal transduction cascades can be modelled in a modular fashion, using both a qualitative approach { Qualitative Petri nets, and quantitative approaches { Continuous Petri Nets and Ordinary Differential Equations. We review the major elementary building blocks of a cellular signalling model, discuss which critical design decisions have to be made during model building, and present ..

    Computing knock out strategies in metabolic networks

    Full text link
    Given a metabolic network in terms of its metabolites and reactions, our goal is to efficiently compute the minimal knock out sets of reactions required to block a given behaviour. We describe an algorithm which improves the computation of these knock out sets when the elementary modes (minimal functional subsystems) of the network are given. We also describe an algorithm which computes both the knock out sets and the elementary modes containing the blocked reactions directly from the description of the network and whose worst-case computational complexity is better than the algorithms currently in use for these problems. Computational results are included.Comment: 12 page

    Evolution and development of complex computational systems using the paradigm of metabolic computing in Epigenetic Tracking

    Full text link
    Epigenetic Tracking (ET) is an Artificial Embryology system which allows for the evolution and development of large complex structures built from artificial cells. In terms of the number of cells, the complexity of the bodies generated with ET is comparable with the complexity of biological organisms. We have previously used ET to simulate the growth of multicellular bodies with arbitrary 3-dimensional shapes which perform computation using the paradigm of "metabolic computing". In this paper we investigate the memory capacity of such computational structures and analyse the trade-off between shape and computation. We now plan to build on these foundations to create a biologically-inspired model in which the encoding of the phenotype is efficient (in terms of the compactness of the genome) and evolvable in tasks involving non-trivial computation, robust to damage and capable of self-maintenance and self-repair.Comment: In Proceedings Wivace 2013, arXiv:1309.712

    Signatures of arithmetic simplicity in metabolic network architecture

    Get PDF
    Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that several of the properties predicted by the artificial chemistry model hold for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity
    corecore