3,438 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    Hybrid of ant colony optimization and flux variability analysis for improving metabolites production

    Get PDF
    Metabolic engineering has been successfully used for the production of a variety of useful compounds such as L-phenylalanine and biohydrogen that received high demand on food, pharmaceutical, fossil fuels, and energy industries. Reaction deletion is one of the strategies of in silico metabolic engineering that can alter the metabolism of microbial cells with the objective to get the desired phenotypes. However, due to the size and complexity of metabolic networks, it is difficult to determine the near-optimal set of reactions to be knocked out. The complexity of the metabolic network is also caused by the presence of competing pathway that may interrupt the high production of a desireable metabolite. Consequently, this factor leads to low Biomass-Product Coupled Yield (BPCY), production rate and growth rate. Other than that, inefficiency of existing algorithms in modelling high growth rate and production rate is another problem that should be handled and solved. Therefore, this research proposed a hybrid algorithm comprising Ant Colony Optimization and Flux Variability Analysis (ACOFVA) to identify the best reaction combination to be knocked out to improve the production of desired metabolites in microorganisms. Based on the experimental results, ACOFVA shows an increase in terms of BPCY and production rate of L-Phenylalanine in Yeast and biohydrogen in Cyanobacteria, while maintaining the optimal growth rate for the target organism. Besides, suggested reactions to be knocked out for improving the production yield of L-Phenylalanine and biohydrogen have been identified and validated through the biological database. The algorithm also shows a good performance with better production rate and BPCY of L-Phenylalanine and biohydrogen than existing results

    Multicriteria global optimization for biocircuit design

    Get PDF
    One of the challenges in Synthetic Biology is to design circuits with increasing levels of complexity. While circuits in Biology are complex and subject to natural tradeoffs, most synthetic circuits are simple in terms of the number of regulatory regions, and have been designed to meet a single design criterion. In this contribution we introduce a multiobjective formulation for the design of biocircuits. We set up the basis for an advanced optimization tool for the modular and systematic design of biocircuits capable of handling high levels of complexity and multiple design criteria. Our methodology combines the efficiency of global Mixed Integer Nonlinear Programming solvers with multiobjective optimization techniques. Through a number of examples we show the capability of the method to generate non intuitive designs with a desired functionality setting up a priori the desired level of complexity. The presence of more than one competing objective provides a realistic design setting where every design solution represents a trade-off between different criteria. The tool can be useful to explore and identify different design principles for synthetic gene circuits

    Hybrid approach for metabolites production using differential evolution and minimization of metabolic adjustment

    Get PDF
    Microbial strains can be optimized using metabolic engineering which implements gene knockout techniques. These techniques manipulate potential genes to increase the yield of metabolites through restructuring metabolic networks. Nowadays, several hybrid optimization algorithms have been proposed to optimize the microbial strains. However, the existing algorithms were unable to obtain optimal strains because the nonessential genes are hardly to be diagnosed and need to be removed due to high complexity of metabolic network. Therefore, the main goal of this study is to overcome the limitation of the existing algorithms by proposing a hybrid of Differential Evolution and Minimization of Metabolic Adjustments (DEMOMA). Differential Evolution (DE) is known as population-based stochastic search algorithm with few tuneable parameter control. Minimization of Metabolic Adjustment (MOMA) is one of the constraint based algorithms which act to simulate the cellular metabolism after perturbation (gene knockout) occurred to the metabolic model. The strength of MOMA is the ability to simulate the strains that have undergone mutation precisely compared to Flux Balance Analysis. The data set used for the production of fumaric acid is S. cerevisiae whereas data set for lycopene production is Y. lipolytica metabolic networks model. Experimental results show that the DEMOMA was able to improve the growth rate for the fumaric acid production rate while for the lycopene production, Biomass Product Coupled Yield (BPCY) and production rate were both able to be optimized

    A hybrid of ant colony optimization and flux variability analysis to improve the production of l-phenylalanine and biohydrogen

    Get PDF
    In silico metabolic engineering has shown many successful results in genome - scale model reconstruction and modification of metabolic network by implementing reaction deletion strategies to improve microbial strain such as production yield and growth rate. While improving the metabolites production, optimization algorithm has been implemented gradually in previous studies to identify the near - optimal sets of reaction knockout to obtain the best results. However, previous works implemented other algorithms that differ than this study which faced with several issues such as premature convergence and able to only produce low production yield because of ineffective algorithm and existence of complex metabolic data. The lack of effective genome models is because of the presence thousands of reactions in the metabolic network caused complex and high dimensional data size that contains competing pathway of non - desirable product. Indeed, the suitable population size and knockout number for this new algorithm have been tested previously. This study proposes an algorithm that is a hybrid of the ant colony optimization algorithm and flux variability analysis (ACOFVA) to predict near - optimal sets of reactions knockout in an effort to improve the growth rates and the production rate of L - phenylalanine and biohydrogen in Saccharomyces cerevisiae and cyanobacteria Synechocystis sp PCC6803 respectively

    The design and applications of the african buffalo algorithm for general optimization problems

    Get PDF
    Optimization, basically, is the economics of science. It is concerned with the need to maximize profit and minimize cost in terms of time and resources needed to execute a given project in any field of human endeavor. There have been several scientific investigations in the past several decades on discovering effective and efficient algorithms to providing solutions to the optimization needs of mankind leading to the development of deterministic algorithms that provide exact solutions to optimization problems. In the past five decades, however, the attention of scientists has shifted from the deterministic algorithms to the stochastic ones since the latter have proven to be more robust and efficient, even though they do not guarantee exact solutions. Some of the successfully designed stochastic algorithms include Simulated Annealing, Genetic Algorithm, Ant Colony Optimization, Particle Swarm Optimization, Bee Colony Optimization, Artificial Bee Colony Optimization, Firefly Optimization etc. A critical look at these ‘efficient’ stochastic algorithms reveals the need for improvements in the areas of effectiveness, the number of several parameters used, premature convergence, ability to search diverse landscapes and complex implementation strategies. The African Buffalo Optimization (ABO), which is inspired by the herd management, communication and successful grazing cultures of the African buffalos, is designed to attempt solutions to the observed shortcomings of the existing stochastic optimization algorithms. Through several experimental procedures, the ABO was used to successfully solve benchmark optimization problems in mono-modal and multimodal, constrained and unconstrained, separable and non-separable search landscapes with competitive outcomes. Moreover, the ABO algorithm was applied to solve over 100 out of the 118 benchmark symmetric and all the asymmetric travelling salesman’s problems available in TSPLIB95. Based on the successful experimentation with the novel algorithm, it is safe to conclude that the ABO is a worthy contribution to the scientific literature
    corecore