51 research outputs found

    A Review of Meta-level Learning in the Context of Multi-component, Multi-level Evolving Prediction Systems.

    Get PDF
    The exponential growth of volume, variety and velocity of data is raising the need for investigations of automated or semi-automated ways to extract useful patterns from the data. It requires deep expert knowledge and extensive computational resources to find the most appropriate mapping of learning methods for a given problem. It becomes a challenge in the presence of numerous configurations of learning algorithms on massive amounts of data. So there is a need for an intelligent recommendation engine that can advise what is the best learning algorithm for a dataset. The techniques that are commonly used by experts are based on a trial and error approach evaluating and comparing a number of possible solutions against each other, using their prior experience on a specific domain, etc. The trial and error approach combined with the expert’s prior knowledge, though computationally and time expensive, have been often shown to work for stationary problems where the processing is usually performed off-line. However, this approach would not normally be feasible to apply on non-stationary problems where streams of data are continuously arriving. Furthermore, in a non-stationary environment the manual analysis of data and testing of various methods every time when there is a change in the underlying data distribution would be very difficult or simply infeasible. In that scenario and within an on-line predictive system, there are several tasks where Meta-learning can be used to effectively facilitate best recommendations including: 1) pre processing steps, 2) learning algorithms or their combination, 3) adaptivity mechanisms and their parameters, 4) recurring concept extraction, and 5) concept drift detection. However, while conceptually very attractive and promising, the Meta-learning leads to several challenges with the appropriate representation of the problem at a meta-level being one of the key ones. The goal of this review and our research is, therefore, to investigate Meta learning in general and the associated challenges in the context of automating the building, deployment and adaptation of multi-level and multi-component predictive system that evolve over time

    Meta-level learning for the effective reduction of model search space.

    Get PDF
    The exponential growth of volume, variety and velocity of the data is raising the need for investigation of intelligent ways to extract useful patterns from the data. It requires deep expert knowledge and extensive computational resources to find the mapping of learning methods that leads to the optimized performance on a given task. Moreover, numerous configurations of these learning algorithms add another level of complexity. Thus, it triggers the need for an intelligent recommendation engine that can advise the best learning algorithm and its configurations for a given task. The techniques that are commonly used by experts are; trial-and-error, use their prior experience on the specific domain, etc. These techniques sometimes work for less complex tasks that require thousands of parameters to learn. However, the state-of-the-art models, e.g. deep learning models, require well-tuned hyper-parameters to learn millions of parameters which demand specialized skills and numerous computationally expensive and time-consuming trials. In that scenario, Meta-level learning can be a potential solution that can recommend the most appropriate options efficiently and effectively regardless of the complexity of data. On the contrary, Meta-learning leads to several challenges; the most critical ones being model selection and hyper-parameter optimization. The goal of this research is to investigate model selection and hyper-parameter optimization approaches of automatic machine learning in general and the challenges associated with them. In machine learning pipeline there are several phases where Meta-learning can be used to effectively facilitate the best recommendations including 1) pre-processing steps, 2) learning algorithm or their combination, 3) adaptivity mechanism parameters, 4) recurring concept extraction, and 5) concept drift detection. The scope of this research is limited to feature engineering for problem representation, and learning strategy for algorithm and its hyper-parameters recommendation at Meta-level. There are three studies conducted around the two different approaches of automatic machine learning which are model selection using Meta-learning and hyper-parameter optimization. The first study evaluates the situation in which the use of additional data from a different domain can improve the performance of a meta-learning system for time-series forecasting, with focus on cross- domain Meta-knowledge transfer. Although the experiments revealed limited room for improvement over the overall best base-learner, the meta-learning approach turned out to be a safe choice, minimizing the risk of selecting the least appropriate base-learner. There are only 2% of cases recommended by meta- learning that are the worst performing base-learning methods. The second study proposes another efficient and accurate domain adaption approach but using a different meta-learning approach. This study empirically confirms the intuition that there exists a relationship between the similarity of the two different tasks and the depth of network needed to fine-tune in order to achieve accuracy com- parable with that of a model trained from scratch. However, the approach is limited to a single hyper-parameter which is fine-tuning of the network depth based on task similarity. The final study of this research has expanded the set of hyper-parameters while implicitly considering task similarity at the intrinsic dynamics of the training process. The study presents a framework to automatically find a good set of hyper-parameters resulting in reasonably good accuracy, by framing the hyper-parameter selection and tuning within the reinforcement learning regime. The effectiveness of a recommended tuple can be tested very quickly rather than waiting for the network to converge. This approach produces accuracy close to the state-of-the-art approach and is found to be comparatively 20% less computationally expensive than previous approaches. The proposed methods in these studies, belonging to different areas of automatic machine learning, have been thoroughly evaluated on a number of benchmark datasets which confirmed the great potential of these methods

    Metalearning: a survey of trends and technologies

    Get PDF
    Metalearning attracted considerable interest in the machine learning community in the last years. Yet, some disagreement remains on what does or what does not constitute a metalearning problem and in which contexts the term is used in. This survey aims at giving an all-encompassing overview of the research directions pursued under the umbrella of metalearning, reconciling different definitions given in scientific literature, listing the choices involved when designing a metalearning system and identifying some of the future research challenges in this domain. © 2013 The Author(s)

    Forecasting large collections of time series: feature-based methods

    Full text link
    In economics and many other forecasting domains, the real world problems are too complex for a single model that assumes a specific data generation process. The forecasting performance of different methods changes depending on the nature of the time series. When forecasting large collections of time series, two lines of approaches have been developed using time series features, namely feature-based model selection and feature-based model combination. This chapter discusses the state-of-the-art feature-based methods, with reference to open-source software implementations

    Experimental Designs, Meta-Modeling, and Meta-learning for Mixed-Factor Systems with Large Decision Spaces

    Get PDF
    Many Air Force studies require a design and analysis process that can accommodate for the computational challenges associated with complex systems, simulations, and real-world decisions. For systems with large decision spaces and a mixture of continuous, discrete, and categorical factors, nearly orthogonal-and-balanced (NOAB) designs can be used as efficient, representative subsets of all possible design points for system evaluation, where meta-models are then fitted to act as surrogates to system outputs. The mixed-integer linear programming (MILP) formulations used to construct first-order NOAB designs are extended to solve for low correlation between second-order model terms (i.e., two-way interactions and quadratics). The resulting second-order approaches are shown to improve design performance measures for second-order model parameter estimation and prediction variance as well as for protection from bias due to model misspecification with respect to second-order terms. Further extensions are developed to construct batch sequential NOAB designs, giving experimenters more flexibility by creating multiple stages of design points using different NOAB approaches, where simultaneous construction of stages is shown to outperform design augmentation overall. To reduce cost and add analytical rigor, meta-learning frameworks are developed for accurate and efficient selection of first-order NOAB designs as well as of meta-models that approximate mixed-factor systems

    Review of automated time series forecasting pipelines

    Get PDF
    Time series forecasting is fundamental for various use cases in different domains such as energy systems and economics. Creating a forecasting model for a specific use case requires an iterative and complex design process. The typical design process includes the five sections (1) data pre-processing, (2) feature engineering, (3) hyperparameter optimization, (4) forecasting method selection, and (5) forecast ensembling, which are commonly organized in a pipeline structure. One promising approach to handle the ever-growing demand for time series forecasts is automating this design process. The present paper, thus, analyzes the existing literature on automated time series forecasting pipelines to investigate how to automate the design process of forecasting models. Thereby, we consider both Automated Machine Learning (AutoML) and automated statistical forecasting methods in a single forecasting pipeline. For this purpose, we firstly present and compare the proposed automation methods for each pipeline section. Secondly, we analyze the automation methods regarding their interaction, combination, and coverage of the five pipeline sections. For both, we discuss the literature, identify problems, give recommendations, and suggest future research. This review reveals that the majority of papers only cover two or three of the five pipeline sections. We conclude that future research has to holistically consider the automation of the forecasting pipeline to enable the large-scale application of time series forecasting

    Review of automated time series forecasting pipelines

    Get PDF
    Time series forecasting is fundamental for various use cases in different domains such as energy systems and economics. Creating a forecasting model for a specific use case requires an iterative and complex design process. The typical design process includes the five sections (1) data pre-processing, (2) feature engineering, (3) hyperparameter optimization, (4) forecasting method selection, and (5) forecast ensembling, which are commonly organized in a pipeline structure. One promising approach to handle the ever-growing demand for time series forecasts is automating this design process. The present paper, thus, analyzes the existing literature on automated time series forecasting pipelines to investigate how to automate the design process of forecasting models. Thereby, we consider both Automated Machine Learning (AutoML) and automated statistical forecasting methods in a single forecasting pipeline. For this purpose, we firstly present and compare the proposed automation methods for each pipeline section. Secondly, we analyze the automation methods regarding their interaction, combination, and coverage of the five pipeline sections. For both, we discuss the literature, identify problems, give recommendations, and suggest future research. This review reveals that the majority of papers only cover two or three of the five pipeline sections. We conclude that future research has to holistically consider the automation of the forecasting pipeline to enable the large-scale application of time series forecasting

    Meta-learning for Forecasting Model Selection

    Get PDF
    Model selection for time series forecasting is a challenging task for practitioners and academia. There are multiple approaches to address this, ranging from time series analysis using a series of statistical tests, to information criteria or empirical approaches that rely on cross-validated errors. In recent forecasting competitions, meta-learning obtained promising results establishing its place as a model selection alternative. Meta-learning constructs meta-features for each time series and trains a classifier on these to choose the most appropriate forecasting method. In the first part, this thesis studies the main components of meta-learning and analyses the effect of alternative meta-features, meta-learners, and base forecasters in the final model selection results. We investigate different meta-learners, the use of simple or complex base forecasts, and a large and diverse set of meta-features. Our findings show that stationarity tests, which identify the presence of unit root in time series, and proxies of autoregressive information, which show the strength of serial correlation in a series, have the highest importance for the performance of meta-learning. On the contrary, features related to time series quantiles and other descriptive statistics such as the mean, and the variance exhibit the lowest importance. Furthermore, we observe that using simple base forecasters is more sensitive to the number of groups of features employed as meta-feature and overall had worse performed. In terms of the choice of learners, classifiers with evidence of good performance in the literature resulted in the most accurate meta-learners. The success of meta-learning largely depends on its building components. The selection and generation of the appropriate meta-features remains a major challenge in meta-learning. In the second part, we propose using Convolutional Neural Networks (CNN) to overcome this. CNN have demonstrated breakthrough accuracy in pattern recognition tasks and can generate features as needed internally, within its layers, without intervention from the modeller. Using CNN, we provide empirical evidence of the efficacy of the approach, against widely accepted forecast selection methods and discuss the advantages and limitations of the proposed approach. Finally, we provide additional evidence that using meta-learning, for automated model selection, outperformed all of the individual benchmark forecasts
    • …
    corecore