1,134 research outputs found

    A swarm intelligence-based ensemble learning model for optimizing customer churn prediction in the telecommunications sector

    Get PDF
    In today's competitive market, predicting clients' behavior is crucial for businesses to meet their needs and prevent them from being attracted by competitors. This is especially important in industries like telecommunications, where the cost of acquiring new customers exceeds retaining existing ones. To achieve this, companies employ Customer Churn Prediction approaches to identify potential customer attrition and develop retention plans. Machine learning models are highly effective in identifying such customers; however, there is a need for more effective techniques to handle class imbalance in churn datasets and enhance prediction accuracy in complex churn prediction datasets. To address these challenges, we propose a novel two-level stacking-mode ensemble learning model that utilizes the Whale Optimization Algorithm for feature selection and hyper-parameter optimization. We also introduce a method combining K-member clustering and Whale Optimization to effectively handle class imbalance in churn datasets. Extensive experiments conducted on well-known datasets, along with comparisons to other machine learning models and existing churn prediction methods, demonstrate the superiority of the proposed approach

    Automated identification and behaviour classification for modelling social dynamics in group-housed mice

    Get PDF
    Mice are often used in biology as exploratory models of human conditions, due to their similar genetics and physiology. Unfortunately, research on behaviour has traditionally been limited to studying individuals in isolated environments and over short periods of time. This can miss critical time-effects, and, since mice are social creatures, bias results. This work addresses this gap in research by developing tools to analyse the individual behaviour of group-housed mice in the home-cage over several days and with minimal disruption. Using data provided by the Mary Lyon Centre at MRC Harwell we designed an end-to-end system that (a) tracks and identifies mice in a cage, (b) infers their behaviour, and subsequently (c) models the group dynamics as functions of individual activities. In support of the above, we also curated and made available a large dataset of mouse localisation and behaviour classifications (IMADGE), as well as two smaller annotated datasets for training/evaluating the identification (TIDe) and behaviour inference (ABODe) systems. This research constitutes the first of its kind in terms of the scale and challenges addressed. The data source (side-view single-channel video with clutter and no identification markers for mice) presents challenging conditions for analysis, but has the potential to give richer information while using industry standard housing. A Tracking and Identification module was developed to automatically detect, track and identify the (visually similar) mice in the cluttered home-cage using only single-channel IR video and coarse position from RFID readings. Existing detectors and trackers were combined with a novel Integer Linear Programming formulation to assign anonymous tracks to mouse identities. This utilised a probabilistic weight model of affinity between detections and RFID pickups. The next task necessitated the implementation of the Activity Labelling module that classifies the behaviour of each mouse, handling occlusion to avoid giving unreliable classifications when the mice cannot be observed. Two key aspects of this were (a) careful feature-selection, and (b) judicious balancing of the errors of the system in line with the repercussions for our setup. Given these sequences of individual behaviours, we analysed the interaction dynamics between mice in the same cage by collapsing the group behaviour into a sequence of interpretable latent regimes using both static and temporal (Markov) models. Using a permutation matrix, we were able to automatically assign mice to roles in the HMM, fit a global model to a group of cages and analyse abnormalities in data from a different demographic

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    Detecting Team Conflict From Multiparty Dialogue

    Get PDF
    The emergence of online collaboration platforms has dramatically changed the dynamics of human teamwork, creating a veritable army of virtual teams composed of workers in different physical locations. The global world requires a tremendous amount of collaborative problem solving, primarily virtual, making it an excellent domain for computer scientists and team cognition researchers who seek to understand the dynamics involved in collaborative tasks to provide a solution that can support effective collaboration. Mining and analyzing data from collaborative dialogues can yield insights into virtual teams\u27 thought processes and help develop virtual agents to support collaboration. Good communication is indubitably the foundation of effective collaboration. Over time teams develop their own communication styles and often exhibit entrainment, a conversational phenomenon in which humans synchronize their linguistic choices. This dissertation presents several technical innovations in the usage of machine learning towards analyzing, monitoring, and predicting collaboration success from multiparty dialogue by successfully handling the problems of resource scarcity and natural distribution shifts. First, we examine the problem of predicting team performance from embeddings learned from multiparty dialogues such that teams with similar conflict scores lie close to one another in vector space. We extract the embeddings from three types of features: 1) dialogue acts 2) sentiment polarity 3) syntactic entrainment. Although all of these features can be used to predict team performance effectively, their utility varies by the teamwork phase. We separate the dialogues of players playing a cooperative game into stages: 1) early (knowledge building), 2) middle (problem-solving), and 3) late (culmination). Unlike syntactic entrainment, both dialogue act and sentiment embeddings effectively classify team performance, even during the initial phase. Second, we address the problem of learning generalizable models of collaboration. Machine learning models often suffer domain shifts; one advantage of encoding the semantic features is their adaptability across multiple domains. We evaluate the generalizability of different embeddings to other goal-oriented teamwork dialogues. Finally, in addition to identifying the features predictive of successful collaboration, we propose multi-feature embedding (MFeEmb) to improve the generalizability of collaborative task success prediction models under natural distribution shifts and resource scarcity. MFeEmb leverages the strengths of semantic, structural, and textual features of the dialogues by incorporating the most meaningful information from dialogue acts (DAs), sentiment polarities, and vocabulary of the dialogues. To further enhance the performance of MFeEmb under a resource-scarce scenario, we employ synthetic data generation and few-shot learning. We use the method proposed by Bailey and Chopra (2018) for few-shot learning from the FsText python library. We replaced the universal embedding with our proposed multi-feature embedding to compare the performance of the two. For data augmentation, we propose using synonym replacement from collaborative dialogue vocabulary instead of synonym replacement from WordNet. The research was conducted on several multiparty dialogue datasets, including ASIST, SwDA, Hate Speech, Diplomacy, Military, SAMSum, AMI, and GitHub. Results show that the proposed multi-feature embedding is an excellent choice for the meta-training stage of the few-shot learning, even if it learns from a small train set of size as small as 62 samples. Also, our proposed data augmentation method showed significant performance improvement. Our research has potential ramifications for the development of conversational agents that facilitate teaming as well as towards the creation of more effective social coding platforms to better support teamwork between software engineers

    Modular lifelong machine learning

    Get PDF
    Deep learning has drastically improved the state-of-the-art in many important fields, including computer vision and natural language processing (LeCun et al., 2015). However, it is expensive to train a deep neural network on a machine learning problem. The overall training cost further increases when one wants to solve additional problems. Lifelong machine learning (LML) develops algorithms that aim to efficiently learn to solve a sequence of problems, which become available one at a time. New problems are solved with less resources by transferring previously learned knowledge. At the same time, an LML algorithm needs to retain good performance on all encountered problems, thus avoiding catastrophic forgetting. Current approaches do not possess all the desired properties of an LML algorithm. First, they primarily focus on preventing catastrophic forgetting (Diaz-Rodriguez et al., 2018; Delange et al., 2021). As a result, they neglect some knowledge transfer properties. Furthermore, they assume that all problems in a sequence share the same input space. Finally, scaling these methods to a large sequence of problems remains a challenge. Modular approaches to deep learning decompose a deep neural network into sub-networks, referred to as modules. Each module can then be trained to perform an atomic transformation, specialised in processing a distinct subset of inputs. This modular approach to storing knowledge makes it easy to only reuse the subset of modules which are useful for the task at hand. This thesis introduces a line of research which demonstrates the merits of a modular approach to lifelong machine learning, and its ability to address the aforementioned shortcomings of other methods. Compared to previous work, we show that a modular approach can be used to achieve more LML properties than previously demonstrated. Furthermore, we develop tools which allow modular LML algorithms to scale in order to retain said properties on longer sequences of problems. First, we introduce HOUDINI, a neurosymbolic framework for modular LML. HOUDINI represents modular deep neural networks as functional programs and accumulates a library of pre-trained modules over a sequence of problems. Given a new problem, we use program synthesis to select a suitable neural architecture, as well as a high-performing combination of pre-trained and new modules. We show that our approach has most of the properties desired from an LML algorithm. Notably, it can perform forward transfer, avoid negative transfer and prevent catastrophic forgetting, even across problems with disparate input domains and problems which require different neural architectures. Second, we produce a modular LML algorithm which retains the properties of HOUDINI but can also scale to longer sequences of problems. To this end, we fix the choice of a neural architecture and introduce a probabilistic search framework, PICLE, for searching through different module combinations. To apply PICLE, we introduce two probabilistic models over neural modules which allows us to efficiently identify promising module combinations. Third, we phrase the search over module combinations in modular LML as black-box optimisation, which allows one to make use of methods from the setting of hyperparameter optimisation (HPO). We then develop a new HPO method which marries a multi-fidelity approach with model-based optimisation. We demonstrate that this leads to improvement in anytime performance in the HPO setting and discuss how this can in turn be used to augment modular LML methods. Overall, this thesis identifies a number of important LML properties, which have not all been attained in past methods, and presents an LML algorithm which can achieve all of them, apart from backward transfer

    Cerebrovascular dysfunction in cerebral small vessel disease

    Get PDF
    INTRODUCTION: Cerebral small vessel disease (SVD) is the cause of a quarter of all ischaemic strokes and is postulated to have a role in up to half of all dementias. SVD pathophysiology remains unclear but cerebrovascular dysfunction may be important. If confirmed many licensed medications have mechanisms of action targeting vascular function, potentially enabling new treatments via drug repurposing. Knowledge is limited however, as most studies assessing cerebrovascular dysfunction are small, single centre, single imaging modality studies due to the complexities in measuring cerebrovascular dysfunctions in humans. This thesis describes the development and application of imaging techniques measuring several cerebrovascular dysfunctions to investigate SVD pathophysiology and trial medications that may improve small blood vessel function in SVD. METHODS: Participants with minor ischaemic strokes were recruited to a series of studies utilising advanced MRI techniques to measure cerebrovascular dysfunction. Specifically MRI scans measured the ability of different tissues in the brain to change blood flow in response to breathing carbon dioxide (cerebrovascular reactivity; CVR) and the flow and pulsatility through the cerebral arteries, venous sinuses and CSF spaces. A single centre observational study optimised and established feasibility of the techniques and tested associations of cerebrovascular dysfunctions with clinical and imaging phenotypes. Then a randomised pilot clinical trial tested two medications’ (cilostazol and isosorbide mononitrate) ability to improve CVR and pulsatility over a period of eight weeks. The techniques were then expanded to include imaging of blood brain barrier permeability and utilised in multi-centre studies investigating cerebrovascular dysfunction in both sporadic and monogenetic SVDs. RESULTS: Imaging protocols were feasible, consistently being completed with usable data in over 85% of participants. After correcting for the effects of age, sex and systolic blood pressure, lower CVR was associated with higher white matter hyperintensity volume, Fazekas score and perivascular space counts. Lower CVR was associated with higher pulsatility of blood flow in the superior sagittal sinus and lower CSF flow stroke volume at the foramen magnum. Cilostazol and isosorbide mononitrate increased CVR in white matter. The CVR, intra-cranial flow and pulsatility techniques, alongside blood brain barrier permeability and microstructural integrity imaging were successfully employed in a multi-centre observational study. A clinical trial assessing the effects of drugs targeting blood pressure variability is nearing completion. DISCUSSION: Cerebrovascular dysfunction in SVD has been confirmed and may play a more direct role in disease pathogenesis than previously established risk factors. Advanced imaging measures assessing cerebrovascular dysfunction are feasible in multi-centre studies and trials. Identifying drugs that improve cerebrovascular dysfunction using these techniques may be useful in selecting candidates for definitive clinical trials which require large sample sizes and long follow up periods to show improvement against outcomes of stroke and dementia incidence and cognitive function

    Developing Transferable Deep Models for Mobile Health

    Get PDF
    Human behavior is one of the key facets of health. A major portion of healthcare spending in the US is attributed to chronic diseases, which are linked to behavioral risk factors such as smoking, drinking, unhealthy eating. Mobile devices that are integrated into people's everyday lives make it possible for us to get a closer look into behavior. Two of the most commonly used sensing modalities include Ecological Momentary Assessments (EMAs): surveys about mental states, environment, and other factors, and wearable sensors that are used to capture high frequency contextual and physiological signals. One of the main visions of mobile health (mHealth) is sensor-based behavior modification. Contextual data collected from participants is typically used to train a risk prediction model for adverse events such as smoking, which can then be used to inform intervention design. However, there are several choices in an mHealth study such as the demographics of the participants in the study, the type of sensors used, the questions included in the EMA. This results in two technical challenges to using machine learning models effectively across mHealth studies. The first is the problem of domain shift where the data distribution varies across studies. This would result in models trained on one study to have sub-optimal performance on a different study. Domain shift is common in wearable sensor data since there are several sources of variability such as sensor design, the placement of the sensor on the body, demographics of the users, etc. The second challenge is that of covariate-space shift where the input-space changes across datasets. This is common across EMA datasets since questions can vary based on the study. This thesis studies the problem of covariate-space shift and domain shift in mHealth data. First, I study the problem of domain shift caused by differences in the sensor type and placement in ECG and PPG signals. I propose a self-supervised learning based domain adaptation method that captures the physiological structure of these signals to improve transfer performance of predictive models. Second, I present a method to find a common input representation irrespective of the fine-grained questions in EMA datasets to overcome the problem of covariate-space shift. The next challenge to the deployment of ML models in health is explainability. I explore the problem of bridging the gap between explainability methods and domain experts and present a method to generate plausible, relevant, and convincing explanations.Ph.D

    Structural optimization in steel structures, algorithms and applications

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen
    corecore