1,657 research outputs found

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    Pediatric asthma and autism-genomic perspectives.

    Get PDF
    High-throughput technologies, ranging from microarrays to NexGen sequencing of RNA and genomic DNA, have opened new avenues for exploration of the pathobiology of human disease. Comparisons of the architecture of the genome, identification of mutated or modified sequences, and pre-and post- transcriptional regulation of gene expression as disease specific biomarkers are revolutionizing our understanding of the causes of disease and are guiding the development of new therapies. There is enormous heterogeneity in types of genomic variation that occur in human disease. Some are inherited, while others are the result of new somatic or germline mutations or errors in chromosomal replication. In this review, we provide examples of changes that occur in the human genome in two of the most common chronic pediatric disorders, autism and asthma. The incidence and economic burden of both of these disorders are increasing worldwide. Genomic variations have the potential to serve as biomarkers for personalization of therapy and prediction of outcomes

    Global gene expression profiling of healthy human brain and its application in studying neurological disorders

    Get PDF
    The human brain is the most complex structure known to mankind and one of the greatest challenges in modern biology is to understand how it is built and organized. The power of the brain arises from its variety of cells and structures, and ultimately where and when different genes are switched on and off throughout the brain tissue. In other words, brain function depends on the precise regulation of gene expression in its sub-anatomical structures. But, our understanding of the complexity and dynamics of the transcriptome of the human brain is still incomplete. To fill in the need, we designed a gene expression model that accurately defines the consistent blueprint of the brain transcriptome; thereby, identifying the core brain specific transcriptional processes conserved across individuals. Functionally characterizing this model would provide profound insights into the transcriptional landscape, biological pathways and the expression distribution of neurotransmitter systems. Here, in this dissertation we developed an expression model by capturing the similarly expressed gene patterns across congruently annotated brain structures in six individual brains by using data from the Allen Brain Atlas (ABA). We found that 84% of genes are expressed in at least one of the 190 brain structures. By employing hierarchical clustering we were able to show that distinct structures of a bigger brain region can cluster together while still retaining their expression identity. Further, weighted correlation network analysis identified 19 robust modules of coexpressing genes in the brain that demonstrated a wide range of functional associations. Since signatures of local phenomena can be masked by larger signatures, we performed local analysis on each distinct brain structure. Pathway and gene ontology enrichment analysis on these structures showed, striking enrichment for brain region specific processes. Besides, we also mapped the structural distribution of the gene expression profiles of genes associated with major neurotransmission systems in the human. We also postulated the utility of healthy brain tissue gene expression to predict potential genes involved in a neurological disorder, in the absence of data from diseased tissues. To this end, we developed a supervised classification model, which achieved an accuracy of 84% and an AUC (Area Under the Curve) of 0.81 from ROC plots, for predicting autism-implicated genes using the healthy expression model as the baseline. This study represents the first use of healthy brain gene expression to predict the scope of genes in autism implication and this generic methodology can be applied to predict genes involved in other neurological disorders

    Summaries of plenary, symposia, and oral sessions at the XXII World Congress of Psychiatric Genetics, Copenhagen, Denmark, 12-16 October 2014

    Get PDF
    The XXII World Congress of Psychiatric Genetics, sponsored by the International Society of Psychiatric Genetics, took place in Copenhagen, Denmark, on 12-16 October 2014. A total of 883 participants gathered to discuss the latest findings in the field. The following report was written by student and postdoctoral attendees. Each was assigned one or more sessions as a rapporteur. This manuscript represents topics covered in most, but not all of the oral presentations during the conference, and contains some of the major notable new findings reported

    Transcriptomic signatures of neuronal differentiation and their association with risk genes for autism spectrum and related neuropsychiatric disorders.

    Get PDF
    Genes for autism spectrum disorders (ASDs) are also implicated in fragile X syndrome (FXS), intellectual disabilities (ID) or schizophrenia (SCZ), and converge on neuronal function and differentiation. The SH-SY5Y neuroblastoma cell line, the most widely used system to study neurodevelopment, is currently discussed for its applicability to model cortical development. We implemented an optimal neuronal differentiation protocol of this system and evaluated neurodevelopment at the transcriptomic level using the CoNTeXT framework, a machine-learning algorithm based on human post-mortem brain data estimating developmental stage and regional identity of transcriptomic signatures. Our improved model in contrast to currently used SH-SY5Y models does capture early neurodevelopmental processes with high fidelity. We applied regression modelling, dynamic time warping analysis, parallel independent component analysis and weighted gene co-expression network analysis to identify activated gene sets and networks. Finally, we tested and compared these sets for enrichment of risk genes for neuropsychiatric disorders. We confirm a significant overlap of genes implicated in ASD with FXS, ID and SCZ. However, counterintuitive to this observation, we report that risk genes affect pathways specific for each disorder during early neurodevelopment. Genes implicated in ASD, ID, FXS and SCZ were enriched among the positive regulators, but only ID-implicated genes were also negative regulators of neuronal differentiation. ASD and ID genes were involved in dendritic branching modules, but only ASD risk genes were implicated in histone modification or axonal guidance. Only ID genes were over-represented among cell cycle modules. We conclude that the underlying signatures are disorder-specific and that the shared genetic architecture results in overlaps across disorders such as ID in ASD. Thus, adding developmental network context to genetic analyses will aid differentiating the pathophysiology of neuropsychiatric disorders

    Transcriptome signatures from discordant sibling pairs reveal changes in peripheral blood immune cell composition in Autism Spectrum Disorder

    Get PDF
    Notwithstanding several research efforts in the past years, robust and replicable molecular signatures for autism spectrum disorders from peripheral blood remain elusive. The available literature on blood transcriptome in ASD suggests that through accurate experimental design it is possible to extract important information on the disease pathophysiology at the peripheral level. Here we exploit the availability of a resource for molecular biomarkers in ASD, the Italian Autism Network (ITAN) collection, for the investigation of transcriptomic signatures in ASD based on a discordant sibling pair design. Whole blood samples from 75 discordant sibling pairs selected from the ITAN network where submitted to RNASeq analysis and data analyzed by complementary approaches. Overall, differences in gene expression between affected and unaffected siblings were small. In order to assess the contribution of differences in the relative proportion of blood cells between discordant siblings, we have applied two different cell deconvolution algorithms, showing that the observed molecular signatures mainly reflect changes in peripheral blood immune cell composition, in particular NK cells. The results obtained by the cell deconvolution approach are supported by the analysis performed by WGCNA. Our report describes the largest differential gene expression profiling in peripheral blood of ASD subjects and controls conducted by RNASeq. The observed signatures are consistent with the hypothesis of immune alterations in autism and an increased risk of developing autism in subjects exposed to prenatal infections or stress. Our study also points to a potential role of NMUR1, HMGB3, and PTPRN2 in ASD

    UTMOST, a single and cross-tissue TWAS (Transcriptome Wide Association Study), reveals new ASD (Autism Spectrum Disorder) associated genes

    Get PDF
    Autism spectrum disorders (ASD) is a complex neurodevelopmental disorder that may significantly impact on the affected individual’s life. Common variation (SNPs) could explain about 50% of ASD heritability. Despite this fact and the large size of the last GWAS meta-analysis, it is believed that hundreds of risk genes in ASD have yet to be discovered. New tools, such as TWAS (Transcriptome Wide Association Studies) which integrate tissue expression and genetic data, are a great approach to identify new ASD susceptibility genes. The main goal of this study is to use UTMOST with the publicly available summary statistics from the largest ASD GWAS meta-analysis as genetic input. In addition, an in silico biological characterization for the novel associated loci was performed. Our results have shown the association of 4 genes at the brain level (CIPC, PINX1, NKX2-2, and PTPRE) and have highlighted the association of NKX2-2, MANBA, ERI1, and MITF at the gastrointestinal level. The gastrointestinal associations are quite relevant given the well-established but unexplored relationship between ASD and gastrointestinal symptoms. Cross-tissue analysis has shown the association of NKX2-2 and BLK. UTMOST-associated genes together with their in silico biological characterization seems to point to different biological mechanisms underlying ASD etiology. Thus, it would not be restricted to brain tissue and it will involve the participation of other body tissues such as the gastrointestinalS

    Current Progress and Challenges in the Search for Autism Biomarkers

    Get PDF

    Moving from capstones toward cornerstones: Successes and challenges in applying systems biology to identify mechanisms of autism spectrum disorders

    Get PDF
    The substantial progress in the last few years toward uncovering genetic causes and risk factors for autism spectrum disorders (ASDs) has opened new experimental avenues for identifying the underlying neurobiological mechanism of the condition. The bounty of genetic findings has led to a variety of data-driven exploratory analyses aimed at deriving new insights about the shared features of these genes. These approaches leverage data from a variety of different sources such as co-expression in transcriptomic studies, protein-protein interaction networks, gene ontologies (GOs) annotations, or multi-level combinations of all of these. Here, we review the recurrent themes emerging from these analyses and highlight some of the challenges going forward. Themes include findings that ASD associated genes discovered by a variety of methods have been shown to contain disproportionate amounts of neurite outgrowth/cytoskeletal, synaptic, and more recently Wnt-related and chromatin modifying genes. Expression studies have highlighted a disproportionate expression of ASD gene sets during mid fetal cortical development, particularly for rare variants, with multiple analyses highlighting the striatum and cortical projection and interneurons as well. While these explorations have highlighted potentially interesting relationships among these ASD-related genes, there are challenges in how to best transition these insights into empirically testable hypotheses. Nonetheless, defining shared molecular or cellular pathology downstream of the diverse genes associated with ASDs could provide the cornerstones needed to build toward broadly applicable therapeutic approaches

    The non-coding genome in Autism Spectrum Disorders

    Get PDF
    Autism Spectrum Disorders (ASD) are a group of neurodevelopmental disorders (NDDs) characterized by difficulties in social interaction and communication, repetitive behavior, and restricted interests. While ASD have been proven to have a strong genetic component, current research largely focuses on coding regions of the genome. However, non-coding DNA, which makes up for ∼99% of the human genome, has recently been recognized as an important contributor to the high heritability of ASD, and novel sequencing technologies have been a milestone in opening up new directions for the study of the gene regulatory networks embedded within the non-coding regions. Here, we summarize current progress on the contribution of non-coding alterations to the pathogenesis of ASD and provide an overview of existing methods allowing for the study of their functional relevance, discussing potential ways of unraveling ASD's “missing heritability”S
    corecore