263 research outputs found

    An Attention-based Collaboration Framework for Multi-View Network Representation Learning

    Full text link
    Learning distributed node representations in networks has been attracting increasing attention recently due to its effectiveness in a variety of applications. Existing approaches usually study networks with a single type of proximity between nodes, which defines a single view of a network. However, in reality there usually exists multiple types of proximities between nodes, yielding networks with multiple views. This paper studies learning node representations for networks with multiple views, which aims to infer robust node representations across different views. We propose a multi-view representation learning approach, which promotes the collaboration of different views and lets them vote for the robust representations. During the voting process, an attention mechanism is introduced, which enables each node to focus on the most informative views. Experimental results on real-world networks show that the proposed approach outperforms existing state-of-the-art approaches for network representation learning with a single view and other competitive approaches with multiple views.Comment: CIKM 201

    동쒅, 이쒅, 그리고 λ‚˜λ¬΄ ν˜•νƒœμ˜ κ·Έλž˜ν”„λ₯Ό μœ„ν•œ 비지도 ν‘œν˜„ ν•™μŠ΅

    Get PDF
    ν•™μœ„λ…Όλ¬Έ(박사) -- μ„œμšΈλŒ€ν•™κ΅λŒ€ν•™μ› : κ³΅κ³ΌλŒ€ν•™ 전기·정보곡학뢀, 2022. 8. μ΅œμ§„μ˜.κ·Έλž˜ν”„ 데이터에 λŒ€ν•œ 비지도 ν‘œν˜„ ν•™μŠ΅μ˜ λͺ©μ μ€ κ·Έλž˜ν”„μ˜ ꡬ쑰와 λ…Έλ“œμ˜ 속성을 잘 λ°˜μ˜ν•˜λŠ” μœ μš©ν•œ λ…Έλ“œ λ‹¨μœ„ ν˜Ήμ€ κ·Έλž˜ν”„ λ‹¨μœ„μ˜ 벑터 ν˜•νƒœ ν‘œν˜„μ„ ν•™μŠ΅ν•˜λŠ” 것이닀. 졜근, κ·Έλž˜ν”„ 데이터에 λŒ€ν•΄ κ°•λ ₯ν•œ ν‘œν˜„ ν•™μŠ΅ λŠ₯λ ₯을 κ°–μΆ˜ κ·Έλž˜ν”„ 신경망을 ν™œμš©ν•œ 비지도 κ·Έλž˜ν”„ ν‘œν˜„ ν•™μŠ΅ λͺ¨λΈμ˜ 섀계가 μ£Όλͺ©μ„ λ°›κ³  μžˆλ‹€. λ§Žμ€ 방법듀은 ν•œ μ’…λ₯˜μ˜ 엣지와 ν•œ μ’…λ₯˜μ˜ λ…Έλ“œκ°€ μ‘΄μž¬ν•˜λŠ” 동쒅 κ·Έλž˜ν”„μ— λŒ€ν•œ ν•™μŠ΅μ— 집쀑을 ν•œλ‹€. ν•˜μ§€λ§Œ 이 세상에 μˆ˜λ§Žμ€ μ’…λ₯˜μ˜ 관계가 μ‘΄μž¬ν•˜κΈ° λ•Œλ¬Έμ—, κ·Έλž˜ν”„ λ˜ν•œ ꡬ쑰적, 의미둠적 속성을 톡해 λ‹€μ–‘ν•œ μ’…λ₯˜λ‘œ λΆ„λ₯˜ν•  수 μžˆλ‹€. κ·Έλž˜μ„œ, κ·Έλž˜ν”„λ‘œλΆ€ν„° μœ μš©ν•œ ν‘œν˜„μ„ ν•™μŠ΅ν•˜κΈ° μœ„ν•΄μ„œλŠ” 비지도 ν•™μŠ΅ ν”„λ ˆμž„μ›Œν¬λŠ” μž…λ ₯ κ·Έλž˜ν”„μ˜ νŠΉμ§•μ„ μ œλŒ€λ‘œ κ³ λ €ν•΄μ•Όλ§Œ ν•œλ‹€. λ³Έ ν•™μœ„λ…Όλ¬Έμ—μ„œ μš°λ¦¬λŠ” 널리 μ ‘ν•  수 μžˆλŠ” 세가지 κ·Έλž˜ν”„ ꡬ쑰인 동쒅 κ·Έλž˜ν”„, 트리 ν˜•νƒœμ˜ κ·Έλž˜ν”„, 그리고 이쒅 κ·Έλž˜ν”„μ— λŒ€ν•œ κ·Έλž˜ν”„ 신경망을 ν™œμš©ν•˜λŠ” 비지도 ν•™μŠ΅ λͺ¨λΈλ“€μ„ μ œμ•ˆν•œλ‹€. 처음으둜, μš°λ¦¬λŠ” 동쒅 κ·Έλž˜ν”„μ˜ λ…Έλ“œμ— λŒ€ν•˜μ—¬ 저차원 ν‘œν˜„μ„ ν•™μŠ΅ν•˜λŠ” κ·Έλž˜ν”„ μ»¨λ³Όλ£¨μ…˜ μ˜€ν† μΈμ½”λ” λͺ¨λΈμ„ μ œμ•ˆν•œλ‹€. 기쑴의 κ·Έλž˜ν”„ μ˜€ν† μΈμ½”λ”λŠ” ꡬ쑰의 전체가 ν•™μŠ΅μ΄ λΆˆκ°€λŠ₯ν•΄μ„œ μ œν•œμ μΈ ν‘œν˜„ ν•™μŠ΅ λŠ₯λ ₯을 κ°€μ§ˆ 수 μžˆλŠ” λ°˜λ©΄μ—, μ œμ•ˆν•˜λŠ” μ˜€ν† μΈμ½”λ”λŠ” λ…Έλ“œμ˜ 피쳐λ₯Ό λ³΅μ›ν•˜λ©°,ꡬ쑰의 전체가 ν•™μŠ΅μ΄ κ°€λŠ₯ν•˜λ‹€. λ…Έλ“œμ˜ 피쳐λ₯Ό λ³΅μ›ν•˜κΈ° μœ„ν•΄μ„œ, μš°λ¦¬λŠ” 인코더 λΆ€λΆ„μ˜ 역할이 μ΄μ›ƒν•œ λ…Έλ“œλΌλ¦¬ μœ μ‚¬ν•œ ν‘œν˜„μ„ κ°€μ§€κ²Œ ν•˜λŠ” λΌν”ŒλΌμ‹œμ•ˆ μŠ€λ¬΄λ”©μ΄λΌλŠ” 것에 μ£Όλͺ©ν•˜μ—¬ 디코더 λΆ€λΆ„μ—μ„œλŠ” 이웃 λ…Έλ“œμ˜ ν‘œν˜„κ³Ό λ©€μ–΄μ§€κ²Œ ν•˜λŠ” λΌν”ŒλΌμ‹œμ•ˆ 샀프닝을 ν•˜λ„λ‘ μ„€κ³„ν•˜μ˜€λ‹€. λ˜ν•œ λΌν”ŒλΌμ‹œμ•ˆ 샀프닝을 κ·ΈλŒ€λ‘œ μ μš©ν•˜λ©΄ λΆˆμ•ˆμ •μ„±μ„ μœ λ°œν•  수 있기 λ•Œλ¬Έμ—, μ—£μ§€μ˜ κ°€μ€‘μΉ˜ 값에 음의 값을 쀄 수 μžˆλŠ” λΆ€ν˜Έν˜• κ·Έλž˜ν”„λ₯Ό ν™œμš©ν•˜μ—¬ μ•ˆμ •μ μΈ λΌν”ŒλΌμ‹œμ•ˆ μƒ€ν”„λ‹μ˜ ν˜•νƒœλ₯Ό μ œμ•ˆν•˜μ˜€λ‹€. 동쒅 κ·Έλž˜ν”„μ— λŒ€ν•œ λ…Έλ“œ ν΄λŸ¬μŠ€ν„°λ§κ³Ό 링크 예츑 μ‹€ν—˜μ„ ν†΅ν•˜μ—¬ μ œμ•ˆν•˜λŠ” 방법이 μ•ˆμ •μ μœΌλ‘œ μš°μˆ˜ν•œ μ„±λŠ₯을 λ³΄μž„μ„ ν™•μΈν•˜μ˜€λ‹€. λ‘˜μ§Έλ‘œ, μš°λ¦¬λŠ” 트리의 ν˜•νƒœλ₯Ό κ°€μ§€λŠ” 계측적인 관계λ₯Ό 가지고 μžˆλŠ” κ·Έλž˜ν”„μ˜ λ…Έλ“œ ν‘œν˜„μ„ μ •ν™•ν•˜κ²Œ ν•™μŠ΅ν•˜κΈ° μœ„ν•˜μ—¬ μŒκ³‘μ„  κ³΅κ°„μ—μ„œ λ™μž‘ν•˜λŠ” μ˜€ν† μΈμ½”λ” λͺ¨λΈμ„ μ œμ•ˆν•œλ‹€. μœ ν΄λ¦¬λ””μ–Έ 곡간은 트리λ₯Ό μ‚¬μƒν•˜κΈ°μ— λΆ€μ μ ˆν•˜λ‹€λŠ” 졜근의 뢄석을 ν†΅ν•˜μ—¬, μŒκ³‘μ„  κ³΅κ°„μ—μ„œ κ·Έλž˜ν”„ μ‹ κ²½λ§μ˜ λ ˆμ΄μ–΄λ₯Ό ν™œμš©ν•˜μ—¬ λ…Έλ“œμ˜ 저차원 ν‘œν˜„μ„ ν•™μŠ΅ν•˜κ²Œ λœλ‹€. 이 λ•Œ, κ·Έλž˜ν”„ 신경망이 μŒκ³‘μ„  κΈ°ν•˜ν•™μ—μ„œ 계측 정보λ₯Ό λ‹΄κ³  μžˆλŠ” 거리의 값을 ν™œμš©ν•˜μ—¬ λ…Έλ“œμ˜ μ΄μ›ƒμ‚¬μ΄μ˜ μ€‘μš”λ„λ₯Ό ν™œμš©ν•˜λ„λ‘ μ„€κ³„ν•˜μ˜€λ‹€. μš°λ¦¬λŠ” λ…Όλ¬Έ 인용 관계 λ„€νŠΈμ›Œν¬, 계톡도, 이미지 μ‚¬μ΄μ˜ λ„€νŠΈμ›Œν¬λ“±μ— λŒ€ν•΄ μ œμ•ˆν•œ λͺ¨λΈμ„ μ μš©ν•˜μ—¬ λ…Έλ“œ ν΄λŸ¬μŠ€ν„°λ§κ³Ό 링크 예츑 μ‹€ν—˜μ„ ν•˜μ˜€μœΌλ©°, 트리의 ν˜•νƒœλ₯Ό κ°€μ§€λŠ” κ·Έλž˜ν”„μ— λŒ€ν•΄μ„œ μ œμ•ˆν•œ λͺ¨λΈμ΄ μœ ν΄λ¦¬λ””μ–Έ κ³΅κ°„μ—μ„œ μˆ˜ν–‰ν•˜λŠ” λͺ¨λΈμ— λΉ„ν•΄ ν–₯μƒλœ μ„±λŠ₯을 λ³΄μ˜€λ‹€λŠ” 것을 ν™•μΈν•˜μ˜€λ‹€. λ§ˆμ§€λ§‰μœΌλ‘œ, μš°λ¦¬λŠ” μ—¬λŸ¬ μ’…λ₯˜μ˜ λ…Έλ“œμ™€ 엣지λ₯Ό κ°€μ§€λŠ” μ΄μ’…κ·Έλž˜ν”„μ— λŒ€ν•œ λŒ€μ‘° ν•™μŠ΅ λͺ¨λΈμ„ μ œμ•ˆν•œλ‹€. μš°λ¦¬λŠ” 기쑴의 방법듀이 ν•™μŠ΅ν•˜κΈ° 이전에 μΆ©λΆ„ν•œ 도메인 지식을 μ‚¬μš©ν•˜μ—¬ μ„€κ³„ν•œ λ©”νƒ€νŒ¨μŠ€λ‚˜ λ©”νƒ€κ·Έλž˜ν”„μ— μ˜μ‘΄ν•œλ‹€λŠ” 단점과 λ§Žμ€ μ΄μ’…κ·Έλž˜ν”„μ˜ 엣지가 λ‹€λ₯Έ λ…Έλ“œ μ’…λ₯˜μ‚¬μ΄μ˜ 관계에 μ§‘μ€‘ν•˜κ³  μžˆλ‹€λŠ” 점을 μ£Όλͺ©ν•˜μ˜€λ‹€. 이λ₯Ό 톡해 μš°λ¦¬λŠ” 사전과정이 ν•„μš”μ—†μœΌλ©° λ‹€λ₯Έ μ’…λ₯˜ μ‚¬μ΄μ˜ 관계에 λ”ν•˜μ—¬ 같은 μ’…λ₯˜ μ‚¬μ΄μ˜ 관계도 λ™μ‹œμ— 효율적으둜 ν•™μŠ΅ν•˜κ²Œ ν•˜λŠ” λ©”νƒ€λ…Έλ“œλΌλŠ” κ°œλ…μ„ μ œμ•ˆν•˜μ˜€λ‹€. λ˜ν•œ λ©”νƒ€λ…Έλ“œλ₯Ό κΈ°λ°˜μœΌλ‘œν•˜λŠ” κ·Έλž˜ν”„ 신경망과 λŒ€μ‘° ν•™μŠ΅ λͺ¨λΈμ„ μ œμ•ˆν•˜μ˜€λ‹€. μš°λ¦¬λŠ” μ œμ•ˆν•œ λͺ¨λΈμ„ λ©”νƒ€νŒ¨μŠ€λ₯Ό μ‚¬μš©ν•˜λŠ” μ΄μ’…κ·Έλž˜ν”„ ν•™μŠ΅ λͺ¨λΈκ³Ό λ…Έλ“œ ν΄λŸ¬μŠ€ν„°λ§ λ“±μ˜ μ‹€ν—˜ μ„±λŠ₯으둜 λΉ„κ΅ν•΄λ³΄μ•˜μ„ λ•Œ, λΉ„λ“±ν•˜κ±°λ‚˜ 높은 μ„±λŠ₯을 λ³΄μ˜€μŒμ„ ν™•μΈν•˜μ˜€λ‹€.The goal of unsupervised graph representation learning is extracting useful node-wise or graph-wise vector representation that is aware of the intrinsic structures of the graph and its attributes. These days, designing methodology of unsupervised graph representation learning based on graph neural networks has growing attention due to their powerful representation ability. Many methods are focused on a homogeneous graph that is a network with a single type of node and a single type of edge. However, as many types of relationships exist in this world, graphs can also be classified into various types by structural and semantic properties. For this reason, to learn useful representations from graphs, the unsupervised learning framework must consider the characteristics of the input graph. In this dissertation, we focus on designing unsupervised learning models using graph neural networks for three graph structures that are widely available: homogeneous graphs, tree-like graphs, and heterogeneous graphs. First, we propose a symmetric graph convolutional autoencoder which produces a low-dimensional latent representation from a homogeneous graph. In contrast to the existing graph autoencoders with asymmetric decoder parts, the proposed autoencoder has a newly designed decoder which builds a completely symmetric autoencoder form. For the reconstruction of node features, the decoder is designed based on Laplacian sharpening as the counterpart of Laplacian smoothing of the encoder, which allows utilizing the graph structure in the whole processes of the proposed autoencoder architecture. In order to prevent the numerical instability of the network caused by the Laplacian sharpening introduction, we further propose a new numerically stable form of the Laplacian sharpening by incorporating the signed graphs. The experimental results of clustering, link prediction and visualization tasks on homogeneous graphs strongly support that the proposed model is stable and outperforms various state-of-the-art algorithms. Second, we analyze how unsupervised tasks can benefit from learned representations in hyperbolic space. To explore how well the hierarchical structure of unlabeled data can be represented in hyperbolic spaces, we design a novel hyperbolic message passing autoencoder whose overall auto-encoding is performed in hyperbolic space. The proposed model conducts auto-encoding the networks via fully utilizing hyperbolic geometry in message passing. Through extensive quantitative and qualitative analyses, we validate the properties and benefits of the unsupervised hyperbolic representations of tree-like graphs. Third, we propose the novel concept of metanode for message passing to learn both heterogeneous and homogeneous relationships between any two nodes without meta-paths and meta-graphs. Unlike conventional methods, metanodes do not require a predetermined step to manipulate the given relations between different types to enrich relational information. Going one step further, we propose a metanode-based message passing layer and a contrastive learning model using the proposed layer. In our experiments, we show the competitive performance of the proposed metanode-based message passing method on node clustering and node classification tasks, when compared to state-of-the-art methods for message passing networks for heterogeneous graphs.1 Introduction 1 2 Representation Learning on Graph-Structured Data 4 2.1 Basic Introduction 4 2.1.1 Notations 5 2.2 Traditional Approaches 5 2.2.1 Graph Statistic 5 2.2.2 Neighborhood Overlap 7 2.2.3 Graph Kernel 9 2.2.4 Spectral Approaches 10 2.3 Node Embeddings I: Factorization and Random Walks 15 2.3.1 Factorization-based Methods 15 2.3.2 Random Walk-based Methods 16 2.4 Node Embeddings II: Graph Neural Networks 17 2.4.1 Overview of Framework 17 2.4.2 Representative Models 18 2.5 Learning in Unsupervised Environments 21 2.5.1 Predictive Coding 21 2.5.2 Contrastive Coding 22 2.6 Applications 24 2.6.1 Classifications 24 2.6.2 Link Prediction 26 3 Autoencoder Architecture for Homogeneous Graphs 27 3.1 Overview 27 3.2 Preliminaries 30 3.2.1 Spectral Convolution on Graphs 30 3.2.2 Laplacian Smoothing 32 3.3 Methodology 33 3.3.1 Laplacian Sharpening 33 3.3.2 Numerically Stable Laplacian Sharpening 34 3.3.3 Subspace Clustering Cost for Image Clustering 37 3.3.4 Training 39 3.4 Experiments 40 3.4.1 Datasets 40 3.4.2 Experimental Settings 42 3.4.3 Comparing Methods 42 3.4.4 Node Clustering 43 3.4.5 Image Clustering 45 3.4.6 Ablation Studies 46 3.4.7 Link Prediction 47 3.4.8 Visualization 47 3.5 Summary 49 4 Autoencoder Architecture for Tree-like Graphs 50 4.1 Overview 50 4.2 Preliminaries 52 4.2.1 Hyperbolic Embeddings 52 4.2.2 Hyperbolic Geometry 53 4.3 Methodology 55 4.3.1 Geometry-Aware Message Passing 56 4.3.2 Nonlinear Activation 57 4.3.3 Loss Function 58 4.4 Experiments 58 4.4.1 Datasets 59 4.4.2 Compared Methods 61 4.4.3 Experimental Details 62 4.4.4 Node Clustering and Link Prediction 64 4.4.5 Image Clustering 66 4.4.6 Structure-Aware Unsupervised Embeddings 68 4.4.7 Hyperbolic Distance to Filter Training Samples 71 4.4.8 Ablation Studies 74 4.5 Further Discussions 75 4.5.1 Connection to Contrastive Learning 75 4.5.2 Failure Cases of Hyperbolic Embedding Spaces 75 4.6 Summary 77 5 Contrastive Learning for Heterogeneous Graphs 78 5.1 Overview 78 5.2 Preliminaries 82 5.2.1 Meta-path 82 5.2.2 Representation Learning on Heterogeneous Graphs 82 5.2.3 Contrastive methods for Heterogeneous Graphs 83 5.3 Methodology 84 5.3.1 Definitions 84 5.3.2 Metanode-based Message Passing Layer 86 5.3.3 Contrastive Learning Framework 88 5.4 Experiments 89 5.4.1 Experimental Details 90 5.4.2 Node Classification 94 5.4.3 Node Clustering 96 5.4.4 Visualization 96 5.4.5 Effectiveness of Metanodes 97 5.5 Summary 99 6 Conclusions 101λ°•

    No Pattern, No Recognition: a Survey about Reproducibility and Distortion Issues of Text Clustering and Topic Modeling

    Full text link
    Extracting knowledge from unlabeled texts using machine learning algorithms can be complex. Document categorization and information retrieval are two applications that may benefit from unsupervised learning (e.g., text clustering and topic modeling), including exploratory data analysis. However, the unsupervised learning paradigm poses reproducibility issues. The initialization can lead to variability depending on the machine learning algorithm. Furthermore, the distortions can be misleading when regarding cluster geometry. Amongst the causes, the presence of outliers and anomalies can be a determining factor. Despite the relevance of initialization and outlier issues for text clustering and topic modeling, the authors did not find an in-depth analysis of them. This survey provides a systematic literature review (2011-2022) of these subareas and proposes a common terminology since similar procedures have different terms. The authors describe research opportunities, trends, and open issues. The appendices summarize the theoretical background of the text vectorization, the factorization, and the clustering algorithms that are directly or indirectly related to the reviewed works

    Diagnosis of Autism Spectrum Disorder Based on Brain Network Clustering

    Get PDF
    Developments in magnetic resonance imaging (MRI) provide new non-invasive approachβ€”functional MRI (fMRI)β€”to study functions of brain. With the help of fMRI, I can build functional brain networks (FBN) to model correlations of brain activities between cortical regions. Studies focused on brain diseases, including autism spectrum disorder (ASD), have been conducted based on analyzing alterations in FBNs of patients. New biomarkers are identified, and new theories and assumptions are proposed on pathology of brain diseases. Considering that traditional clinical ASD diagnosis instruments, which greatly rely on interviews and observations, can yield large variance, recent studies start to combine machine learning methods and FBN to perform auto-classification of ASD. Such studies have achieved relatively good accuracy. However, in most of these studies, features they use are extracted from the whole brain networks thus the dimension of the features can be high. High-dimensional features may yield overfitting issues and increase computational complexity. Therefore, I need a feature selection strategy that effectively reduces feature dimensions while keeping a good classification performance. In this study, I present a new feature selection strategy that extracting features from functional modules but not the whole brain networks. I will show that my strategy not only reduces feature dimensions, but also improve performances of auto-classifications of ASD. The whole study can be separated into 4 stages: building FBNs, identification of functional modules, statistical analysis of modular alterations and, finally, training classifiers with modular features for auto-classification of ASD. I firstly demonstrate the whole procedure to build FBNs from fMRI images. To identify functional module, I propose a new network clustering algorithm based on joint non-negative matrix factorization. Different from traditional brain network clustering algorithms that mostly perform on an average network of all subjects, I design my algorithm to factorize multiple brain networks simultaneously because the clustering results should be valid not only on the average network but also on each individual network. I show the modules I find are more valid in both views. Then I statistically analyze the alterations in functional modules between ASD and typically developed (TD) group to determine from which modules I extract features from. Several indices based on graph theory are calculated to measure modular properties. I find significant alterations in two modules. With features from these two modules, I train several widely-used classifiers and validate the classifiers on a real-world dataset. The performances of classifiers trained by modular features are better than those with whole-brain features, which demonstrates the effectiveness of my feature selection strategy

    Innovative Algorithms and Evaluation Methods for Biological Motif Finding

    Get PDF
    Biological motifs are defined as overly recurring sub-patterns in biological systems. Sequence motifs and network motifs are the examples of biological motifs. Due to the wide range of applications, many algorithms and computational tools have been developed for efficient search for biological motifs. Therefore, there are more computationally derived motifs than experimentally validated motifs, and how to validate the biological significance of the β€˜candidate motifs’ becomes an important question. Some of sequence motifs are verified by their structural similarities or their functional roles in DNA or protein sequences, and stored in databases. However, biological role of network motifs is still invalidated and currently no databases exist for this purpose. In this thesis, we focus not only on the computational efficiency but also on the biological meanings of the motifs. We provide an efficient way to incorporate biological information with clustering analysis methods: For example, a sparse nonnegative matrix factorization (SNMF) method is used with Chou-Fasman parameters for the protein motif finding. Biological network motifs are searched by various clustering algorithms with Gene ontology (GO) information. Experimental results show that the algorithms perform better than existing algorithms by producing a larger number of high-quality of biological motifs. In addition, we apply biological network motifs for the discovery of essential proteins. Essential proteins are defined as a minimum set of proteins which are vital for development to a fertile adult and in a cellular life in an organism. We design a new centrality algorithm with biological network motifs, named MCGO, and score proteins in a protein-protein interaction (PPI) network to find essential proteins. MCGO is also combined with other centrality measures to predict essential proteins using machine learning techniques. We have three contributions to the study of biological motifs through this thesis; 1) Clustering analysis is efficiently used in this work and biological information is easily integrated with the analysis; 2) We focus more on the biological meanings of motifs by adding biological knowledge in the algorithms and by suggesting biologically related evaluation methods. 3) Biological network motifs are successfully applied to a practical application of prediction of essential proteins

    Multilayer Networks

    Full text link
    In most natural and engineered systems, a set of entities interact with each other in complicated patterns that can encompass multiple types of relationships, change in time, and include other types of complications. Such systems include multiple subsystems and layers of connectivity, and it is important to take such "multilayer" features into account to try to improve our understanding of complex systems. Consequently, it is necessary to generalize "traditional" network theory by developing (and validating) a framework and associated tools to study multilayer systems in a comprehensive fashion. The origins of such efforts date back several decades and arose in multiple disciplines, and now the study of multilayer networks has become one of the most important directions in network science. In this paper, we discuss the history of multilayer networks (and related concepts) and review the exploding body of work on such networks. To unify the disparate terminology in the large body of recent work, we discuss a general framework for multilayer networks, construct a dictionary of terminology to relate the numerous existing concepts to each other, and provide a thorough discussion that compares, contrasts, and translates between related notions such as multilayer networks, multiplex networks, interdependent networks, networks of networks, and many others. We also survey and discuss existing data sets that can be represented as multilayer networks. We review attempts to generalize single-layer-network diagnostics to multilayer networks. We also discuss the rapidly expanding research on multilayer-network models and notions like community structure, connected components, tensor decompositions, and various types of dynamical processes on multilayer networks. We conclude with a summary and an outlook.Comment: Working paper; 59 pages, 8 figure
    • …
    corecore