5,789 research outputs found

    Distributed event graphs: Formalizing component-based modelling and simulation

    Get PDF
    Proceedings of the Workshop on Visual Languages and Formal Methods (VLFM 2004), Visual Languages and Formal Methods 2004In this work an extension to the classical Event Graphs formalism for discrete-event simulation is presented. The extensions are oriented towards the specification of component-based models. The abstract syntax has been defined through meta-modelling. Several methodological issues are discussed, concerning the use of two different meta-modelling levels or collapsing the language into a single one, where “instance-of” relationships are used between processes and their classes. The operational semantics have been defined through graph transformation. This formal definition enables analysis before code is generated from the model. The syntax and semantics of the visual language have been implemented in the multi-paradigm tool AToM3, together with a code generator that produces stand-alone applications able to run the analysed models in real-time.I’d like to thank the three anonymous referees for their comments, and the sponsors of this work: the Spanish Ministry of Science and Technology (TIC2002- 01948) and the Santander Central Hispano Bank

    Automating the transformation-based analysis of visual languages

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00165-009-0114-yWe present a novel approach for the automatic generation of model-to-model transformations given a description of the operational semantics of the source language in the form of graph transformation rules. The approach is geared to the generation of transformations from Domain-Specific Visual Languages (DSVLs) into semantic domains with an explicit notion of transition, like for example Petri nets. The generated transformation is expressed in the form of operational triple graph grammar rules that transform the static information (initial model) and the dynamics (source rules and their execution control structure). We illustrate these techniques with a DSVL in the domain of production systems, for which we generate a transformation into Petri nets. We also tackle the description of timing aspects in graph transformation rules, and its analysis through their automatic translation into Time Petri netsWork sponsored by the Spanish Ministry of Science and Innovation, project METEORIC (TIN2008-02081/TIN) and by the Canadian Natural Sciences and Engineering Research Council (NSERC)

    A UML/OCL framework for the analysis of fraph transformation rules

    Get PDF
    In this paper we present an approach for the analysis of graph transformation rules based on an intermediate OCL representation. We translate different rule semantics into OCL, together with the properties of interest (like rule applicability, conflicts or independence). The intermediate representation serves three purposes: (i) it allows the seamless integration of graph transformation rules with the MOF and OCL standards, and enables taking the meta-model and its OCL constraints (i.e. well-formedness rules) into account when verifying the correctness of the rules; (ii) it permits the interoperability of graph transformation concepts with a number of standards-based model-driven development tools; and (iii) it makes available a plethora of OCL tools to actually perform the rule analysis. This approach is especially useful to analyse the operational semantics of Domain Specific Visual Languages. We have automated these ideas by providing designers with tools for the graphical specification and analysis of graph transformation rules, including a backannotation mechanism that presents the analysis results in terms of the original language notation

    Prototyping the Semantics of a DSL using ASF+SDF: Link to Formal Verification of DSL Models

    Full text link
    A formal definition of the semantics of a domain-specific language (DSL) is a key prerequisite for the verification of the correctness of models specified using such a DSL and of transformations applied to these models. For this reason, we implemented a prototype of the semantics of a DSL for the specification of systems consisting of concurrent, communicating objects. Using this prototype, models specified in the DSL can be transformed to labeled transition systems (LTS). This approach of transforming models to LTSs allows us to apply existing tools for visualization and verification to models with little or no further effort. The prototype is implemented using the ASF+SDF Meta-Environment, an IDE for the algebraic specification language ASF+SDF, which offers efficient execution of the transformation as well as the ability to read models and produce LTSs without any additional pre or post processing.Comment: In Proceedings AMMSE 2011, arXiv:1106.596

    Towards a Step Semantics for Story-Driven Modelling

    Full text link
    Graph Transformation (GraTra) provides a formal, declarative means of specifying model transformation. In practice, GraTra rule applications are often programmed via an additional language with which the order of rule applications can be suitably controlled. Story-Driven Modelling (SDM) is a dialect of programmed GraTra, originally developed as part of the Fujaba CASE tool suite. Using an intuitive, UML-inspired visual syntax, SDM provides usual imperative control flow constructs such as sequences, conditionals and loops that are fairly simple, but whose interaction with individual GraTra rules is nonetheless non-trivial. In this paper, we present the first results of our ongoing work towards providing a formal step semantics for SDM, which focuses on the execution of an SDM specification.Comment: In Proceedings GaM 2016, arXiv:1612.0105

    Supporting user-oriented analysis for multi-view domain-specific visual languages

    Get PDF
    This is the post-print version of the final paper published in Information and Software Technology. The published article is available from the link below. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. Copyright @ 2008 Elsevier B.V.The integration of usable and flexible analysis support in modelling environments is a key success factor in Model-Driven Development. In this paradigm, models are the core asset from which code is automatically generated, and thus ensuring model correctness is a fundamental quality control activity. For this purpose, a common approach is to transform the system models into formal semantic domains for verification. However, if the analysis results are not shown in a proper way to the end-user (e.g. in terms of the original language) they may become useless. In this paper we present a novel DSVL called BaVeL that facilitates the flexible annotation of verification results obtained in semantic domains to different formats, including the context of the original language. BaVeL is used in combination with a consistency framework, providing support for all steps in a verification process: acquisition of additional input data, transformation of the system models into semantic domains, verification, and flexible annotation of analysis results. The approach has been validated analytically by the cognitive dimensions framework, and empirically by its implementation and application to several DSVLs. Here we present a case study of a notation in the area of Digital Libraries, where the analysis is performed by transformations into Petri nets and a process algebra.Spanish Ministry of Education and Science and MODUWEB

    Modelling and Analysis Using GROOVE

    Get PDF
    In this paper we present case studies that describe how the graph transformation tool GROOVE has been used to model problems from a wide variety of domains. These case studies highlight the wide applicability of GROOVE in particular, and of graph transformation in general. They also give concrete templates for using GROOVE in practice. Furthermore, we use the case studies to analyse the main strong and weak points of GROOVE

    A Language Description is More than a Metamodel

    Get PDF
    Within the context of (software) language engineering, language descriptions are considered first class citizens. One of the ways to describe languages is by means of a metamodel, which represents the abstract syntax of the language. Unfortunately, in this process many language engineers forget the fact that a language also needs a concrete syntax and a semantics. In this paper I argue that neither of these can be discarded from a language description. In a good language description the abstract syntax is the central element, which functions as pivot between concrete syntax and semantics. Furthermore, both concrete syntax and semantics should be described in a well-defined formalism

    Modelling and analysis of traffic networks based on graph transformation

    Full text link
    This is an electronic version of the paper presented at the Symposium on Formal Methods for Automation and Safety in Railway and Automotive Systems, FORMS/FORMATS 2004 , held in Braunschweig on 2004We present the formal definition of a domain specific visual language (Traffic) for the area of traffic networks. The syntax has been specified by means of meta-modelling. For the semantics, two approaches have been followed. In the first one, graph transformation is used to specify an operational semantics. In the second one we include timing information and a denotational semantics is defined in terms of Timed Transition Petri Nets (TTPN). The transformation from the Traffic formalism into TTPN was also defined by graph transformation. Both approaches have been used for the analysis of Traffic models. The ideas have been implemented in the AToM3 tool and are illustrated with examples.Juan de Lara’s work has been partially sponsored by a grant from the E.U. SEGRAVIS research network (HPRN-CT-2002-00) and the Spanish Ministry of Science and Technology (TIC2002-01948). Hans Vangheluwe gratefully acknowledges partial support for this work by a National Sciences and Engineering Research Council of Canada (NSERC) Individual Research Grant
    corecore