314 research outputs found

    Meta-Learning for Phonemic Annotation of Corpora

    Get PDF
    We apply rule induction, classifier combination and meta-learning (stacked classifiers) to the problem of bootstrapping high accuracy automatic annotation of corpora with pronunciation information. The task we address in this paper consists of generating phonemic representations reflecting the Flemish and Dutch pronunciations of a word on the basis of its orthographic representation (which in turn is based on the actual speech recordings). We compare several possible approaches to achieve the text-to-pronunciation mapping task: memory-based learning, transformation-based learning, rule induction, maximum entropy modeling, combination of classifiers in stacked learning, and stacking of meta-learners. We are interested both in optimal accuracy and in obtaining insight into the linguistic regularities involved. As far as accuracy is concerned, an already high accuracy level (93% for Celex and 86% for Fonilex at word level) for single classifiers is boosted significantly with additional error reductions of 31% and 38% respectively using combination of classifiers, and a further 5% using combination of meta-learners, bringing overall word level accuracy to 96% for the Dutch variant and 92% for the Flemish variant. We also show that the application of machine learning methods indeed leads to increased insight into the linguistic regularities determining the variation between the two pronunciation variants studied.Comment: 8 page

    Essential Speech and Language Technology for Dutch: Results by the STEVIN-programme

    Get PDF
    Computational Linguistics; Germanic Languages; Artificial Intelligence (incl. Robotics); Computing Methodologie

    A Finite State and Data-Oriented Method for Grapheme to Phoneme Conversion

    Full text link
    A finite-state method, based on leftmost longest-match replacement, is presented for segmenting words into graphemes, and for converting graphemes into phonemes. A small set of hand-crafted conversion rules for Dutch achieves a phoneme accuracy of over 93%. The accuracy of the system is further improved by using transformation-based learning. The phoneme accuracy of the best system (using a large set of rule templates and a `lazy' variant of Brill's algoritm), trained on only 40K words, reaches 99% accuracy.Comment: 8 page

    Meta Learning Approach to Phone Duration Modeling

    Get PDF
    One of the essential prerequisites for achieving the naturalness of synthesized speech is the possibility of the automatic prediction of phone duration, due to the high importance of segmental duration in speech perception. In this paper we present a new phone duration prediction model for the Serbian language using meta learning approach. Based on the data obtained from the analysis of a large speech database, we used a feature set of 21 parameters describing phones and their contexts. These include attributes related to the segmental identity, manner of articulation (for consonants), attributes related to phonological context, such as segment types and voicing values of neighboring phones, presence or absence of lexical stress, morphological attributes, such as part-of-speech, and prosodic attributes, such as phonological word length, the position of the segment in the syllable, the position of the syllable in a word, the position of a word in a phrase, phrase break level, etc. Phone duration model obtained using meta learning algorithm outperformed the best individual model by approximately 2,0% and 1,7% in terms of the relative reduction of the root-mean-squared error and the mean absolute error, respectively
    • …
    corecore