15,913 research outputs found

    Learning to Rank from Samples of Variable Quality

    Get PDF
    Training deep neural networks requires many training samples, but in practice, training labels are expensive to obtain and may be of varying quality, as some may be from trusted expert labelers while others might be from heuristics or other sources of weak supervision such as crowd-sourcing. This creates a fundamental quality-versus quantity trade-off in the learning process. Do we learn from the small amount of high-quality data or the potentially large amount of weakly-labeled data? We argue that if the learner could somehow know and take the label-quality into account when learning the data representation, we could get the best of both worlds. To this end, we introduce "fidelity-weighted learning" (FWL), a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. FWL modulates the parameter updates to a student network (trained on the task we care about) on a per-sample basis according to the posterior confidence of its label-quality estimated by a teacher (who has access to the high-quality labels). Both student and teacher are learned from the data. We evaluate FWL on document ranking where we outperform state-of-the-art alternative semi-supervised methods.Comment: Presented at The First International SIGIR2016 Workshop on Learning From Limited Or Noisy Data For Information Retrieval. arXiv admin note: substantial text overlap with arXiv:1711.0279

    Fidelity-Weighted Learning

    Full text link
    Training deep neural networks requires many training samples, but in practice training labels are expensive to obtain and may be of varying quality, as some may be from trusted expert labelers while others might be from heuristics or other sources of weak supervision such as crowd-sourcing. This creates a fundamental quality versus-quantity trade-off in the learning process. Do we learn from the small amount of high-quality data or the potentially large amount of weakly-labeled data? We argue that if the learner could somehow know and take the label-quality into account when learning the data representation, we could get the best of both worlds. To this end, we propose "fidelity-weighted learning" (FWL), a semi-supervised student-teacher approach for training deep neural networks using weakly-labeled data. FWL modulates the parameter updates to a student network (trained on the task we care about) on a per-sample basis according to the posterior confidence of its label-quality estimated by a teacher (who has access to the high-quality labels). Both student and teacher are learned from the data. We evaluate FWL on two tasks in information retrieval and natural language processing where we outperform state-of-the-art alternative semi-supervised methods, indicating that our approach makes better use of strong and weak labels, and leads to better task-dependent data representations.Comment: Published as a conference paper at ICLR 201

    Learning with Weak Supervision for Email Intent Detection

    Full text link
    Email remains one of the most frequently used means of online communication. People spend a significant amount of time every day on emails to exchange information, manage tasks and schedule events. Previous work has studied different ways for improving email productivity by prioritizing emails, suggesting automatic replies or identifying intents to recommend appropriate actions. The problem has been mostly posed as a supervised learning problem where models of different complexities were proposed to classify an email message into a predefined taxonomy of intents or classes. The need for labeled data has always been one of the largest bottlenecks in training supervised models. This is especially the case for many real-world tasks, such as email intent classification, where large scale annotated examples are either hard to acquire or unavailable due to privacy or data access constraints. Email users often take actions in response to intents expressed in an email (e.g., setting up a meeting in response to an email with a scheduling request). Such actions can be inferred from user interaction logs. In this paper, we propose to leverage user actions as a source of weak supervision, in addition to a limited set of annotated examples, to detect intents in emails. We develop an end-to-end robust deep neural network model for email intent identification that leverages both clean annotated data and noisy weak supervision along with a self-paced learning mechanism. Extensive experiments on three different intent detection tasks show that our approach can effectively leverage the weakly supervised data to improve intent detection in emails.Comment: 10 pages, 3 figure

    Learning to Detect Noisy Labels Using Model-Based Features

    Full text link
    Label noise is ubiquitous in various machine learning scenarios such as self-labeling with model predictions and erroneous data annotation. Many existing approaches are based on heuristics such as sample losses, which might not be flexible enough to achieve optimal solutions. Meta learning based methods address this issue by learning a data selection function, but can be hard to optimize. In light of these pros and cons, we propose Selection-Enhanced Noisy label Training (SENT) that does not rely on meta learning while having the flexibility of being data-driven. SENT transfers the noise distribution to a clean set and trains a model to distinguish noisy labels from clean ones using model-based features. Empirically, on a wide range of tasks including text classification and speech recognition, SENT improves performance over strong baselines under the settings of self-training and label corruption
    corecore