755 research outputs found

    Performance Analysis of On-Demand Routing Protocols in Wireless Mesh Networks

    Get PDF
    Wireless Mesh Networks (WMNs) have recently gained a lot of popularity due to their rapid deployment and instant communication capabilities. WMNs are dynamically self-organizing, self-configuring and self-healing with the nodes in the network automatically establishing an adiej hoc network and preserving the mesh connectivity. Designing a routing protocol for WMNs requires several aspects to consider, such as wireless networks, fixed applications, mobile applications, scalability, better performance metrics, efficient routing within infrastructure, load balancing, throughput enhancement, interference, robustness etc. To support communication, various routing protocols are designed for various networks (e.g. ad hoc, sensor, wired etc.). However, all these protocols are not suitable for WMNs, because of the architectural differences among the networks. In this paper, a detailed simulation based performance study and analysis is performed on the reactive routing protocols to verify the suitability of these protocols over such kind of networks. Ad Hoc On-Demand Distance Vector (AODV), Dynamic Source Routing (DSR) and Dynamic MANET On-demand (DYMO) routing protocol are considered as the representative of reactive routing protocols. The performance differentials are investigated using varying traffic load and number of source. Based on the simulation results, how the performance of each protocol can be improved is also recommended.Wireless Mesh Networks (WMNs), IEEE 802.11s, AODV, DSR, DYMO

    Would Current Ad Hoc Routing Protocols be Adequate for the Internet of Vehicles? A Comparative Study

    Get PDF
    In recent years we have seen a great proliferation of smart vehicles, ranging from cars to little drones (both terrestrial and aerial), all endowed with sensors and communication capabilities. It is hence easy to foresee a future with even more smart and connected vehicles moving around, occupying space and creating an Internet of Vehicles (IoV). In this IoV, a multitude of nodes (both static and mobile) will generate a continuous multihop flow of local information to support local smart environment applications. Therefore, one interesting environment for the IoV would be in the form of 3-D mobile ad-hoc networks (MANETs). Unfortunately, MANET routing protocols have generally been designed and analyzed keeping in mind a 2-D scenario; there is no guarantee on how they would support a 3-D topology of the IoV. To this end, we have considered routing protocols deemed as the state-of-the-art for classic MANETs and tested them over 3-D topologies to evaluate their assets and technical challenges

    Secure Routing in Wireless Mesh Networks

    Get PDF
    Wireless mesh networks (WMNs) have emerged as a promising concept to meet the challenges in next-generation networks such as providing flexible, adaptive, and reconfigurable architecture while offering cost-effective solutions to the service providers. Unlike traditional Wi-Fi networks, with each access point (AP) connected to the wired network, in WMNs only a subset of the APs are required to be connected to the wired network. The APs that are connected to the wired network are called the Internet gateways (IGWs), while the APs that do not have wired connections are called the mesh routers (MRs). The MRs are connected to the IGWs using multi-hop communication. The IGWs provide access to conventional clients and interconnect ad hoc, sensor, cellular, and other networks to the Internet. However, most of the existing routing protocols for WMNs are extensions of protocols originally designed for mobile ad hoc networks (MANETs) and thus they perform sub-optimally. Moreover, most routing protocols for WMNs are designed without security issues in mind, where the nodes are all assumed to be honest. In practical deployment scenarios, this assumption does not hold. This chapter provides a comprehensive overview of security issues in WMNs and then particularly focuses on secure routing in these networks. First, it identifies security vulnerabilities in the medium access control (MAC) and the network layers. Various possibilities of compromising data confidentiality, data integrity, replay attacks and offline cryptanalysis are also discussed. Then various types of attacks in the MAC and the network layers are discussed. After enumerating the various types of attacks on the MAC and the network layer, the chapter briefly discusses on some of the preventive mechanisms for these attacks.Comment: 44 pages, 17 figures, 5 table
    • 

    corecore