8,321 research outputs found

    A performance model of multicast communication in wormhole-routed networks on-chip

    Get PDF
    Collective communication operations form a part of overall traffic in most applications running on platforms employing direct interconnection networks. This paper presents a novel analytical model to compute communication latency of multicast as a widely used collective communication operation. The novelty of the model lies in its ability to predict the latency of the multicast communication in wormhole-routed architectures employing asynchronous multi-port routers scheme. The model is applied to the Quarc NoC and its validity is verified by comparing the model predictions against the results obtained from a discrete-event simulator developed using OMNET++

    An occam Style Communications System for UNIX Networks

    Get PDF
    This document describes the design of a communications system which provides occam style communications primitives under a Unix environment, using TCP/IP protocols, and any number of other protocols deemed suitable as underlying transport layers. The system will integrate with a low overhead scheduler/kernel without incurring significant costs to the execution of processes within the run time environment. A survey of relevant occam and occam3 features and related research is followed by a look at the Unix and TCP/IP facilities which determine our working constraints, and a description of the T9000 transputer's Virtual Channel Processor, which was instrumental in our formulation. Drawing from the information presented here, a design for the communications system is subsequently proposed. Finally, a preliminary investigation of methods for lightweight access control to shared resources in an environment which does not provide support for critical sections, semaphores, or busy waiting, is made. This is presented with relevance to mutual exclusion problems which arise within the proposed design. Future directions for the evolution of this project are discussed in conclusion

    Virtual lines, a deadlock free and real-time routing mechanism for ATM networks

    Get PDF
    In this paper we present a routing mechanism and buffer allocation mechanism for an ATM switching fabric. Since the fabric will be used to transfer multimedia traffic it should provide a guaranteed throughput and a bounded latency. We focus on the design of a suitable routing mechanism that is capable to fulfil these requirements and is free of deadlocks. We will describe two basic concepts that can be used to implement deadlock free routing. Routing of messages is closely related to buffering. We have organized the buffers into parallel fifos, each representing a virtual line. In this way we not only have solved the problem of Head Of Line blocking, but we can also give real-time guarantees. We will show that for local high-speed networks it is more advantageous to have a proper flow control than to have large buffers. Although the virtual line concept can have a low buffer utilization, the transfer efficiency can be higher. The virtual lines concept allows adaptive routing. The total throughput of the network can be improved by using alternative routes. Adaptive routing is attractive in networks where alternative routes are not much longer than the initial route(s). The network of the switching fabric is built up from switching elements interconnected in a Kautz topology
    • 

    corecore