28 research outputs found

    Connecting Soil to the Cloud: A Wireless Underground Sensor Network Testbed

    Get PDF
    In this demo, a novel underground communication system and an online underground sensor network testbed is demonstrated. The underground communication system, developed in the Cyber-physical Networking (CPN) Laboratory at the University of Nebraska-Lincoln, includes an underground antenna that is tailored to mitigate the adverse effects of soil on underground communication. An online connection is established with the CPN underground sensor network testbed that is located at Clay Center, Nebraska. The underground sensor network testbed consists of a network of underground communication systems equipped with soil moisture sensors and a mobile data harvesting unit equipped with cellular communication capabilities. Real-time soil moisture data delivery from Nebraska to Korea is demonstrated

    Feedback Control Goes Wireless: Guaranteed Stability over Low-power Multi-hop Networks

    Full text link
    Closing feedback loops fast and over long distances is key to emerging applications; for example, robot motion control and swarm coordination require update intervals of tens of milliseconds. Low-power wireless technology is preferred for its low cost, small form factor, and flexibility, especially if the devices support multi-hop communication. So far, however, feedback control over wireless multi-hop networks has only been shown for update intervals on the order of seconds. This paper presents a wireless embedded system that tames imperfections impairing control performance (e.g., jitter and message loss), and a control design that exploits the essential properties of this system to provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. Using experiments on a cyber-physical testbed with 20 wireless nodes and multiple cart-pole systems, we are the first to demonstrate and evaluate feedback control and coordination over wireless multi-hop networks for update intervals of 20 to 50 milliseconds.Comment: Accepted final version to appear in: 10th ACM/IEEE International Conference on Cyber-Physical Systems (with CPS-IoT Week 2019) (ICCPS '19), April 16--18, 2019, Montreal, QC, Canad

    Real-Time Performance of Industrial IoT Communication Technologies: A Review

    Full text link
    With the growing need for automation and the ongoing merge of OT and IT, industrial networks have to transport a high amount of heterogeneous data with mixed criticality such as control traffic, sensor data, and configuration messages. Current advances in IT technologies furthermore enable a new set of automation scenarios under the roof of Industry 4.0 and IIoT where industrial networks now have to meet new requirements in flexibility and reliability. The necessary real-time guarantees will place significant demands on the networks. In this paper, we identify IIoT use cases and infer real-time requirements along several axes before bridging the gap between real-time network technologies and the identified scenarios. We review real-time networking technologies and present peer-reviewed works from the past 5 years for industrial environments. We investigate how these can be applied to controllers, systems, and embedded devices. Finally, we discuss open challenges for real-time communication technologies to enable the identified scenarios. The review shows academic interest in the field of real-time communication technologies but also highlights a lack of a fixed set of standards important for trust in safety and reliability, especially where wireless technologies are concerned.Comment: IEEE Internet of Things Journal 2023 | Journal article DOI: 10.1109/JIOT.2023.333250

    Reliable Dynamic Packet Scheduling over Lossy Real-Time Wireless Networks

    Get PDF
    Along with the rapid development and deployment of real-time wireless network (RTWN) technologies in a wide range of applications, effective packet scheduling algorithms have been playing a critical role in RTWNs for achieving desired Quality of Service (QoS) for real-time sensing and control, especially in the presence of unexpected disturbances. Most existing solutions in the literature focus either on static or dynamic schedule construction to meet the desired QoS requirements, but have a common assumption that all wireless links are reliable. Although this assumption simplifies the algorithm design and analysis, it is not realistic in real-life settings. To address this drawback, this paper introduces a novel reliable dynamic packet scheduling framework, called RD-PaS. RD-PaS can not only construct static schedules to meet both the timing and reliability requirements of end-to-end packet transmissions in RTWNs for a given periodic network traffic pattern, but also construct new schedules rapidly to handle abruptly increased network traffic induced by unexpected disturbances while minimizing the impact on existing network flows. The functional correctness of the RD-PaS framework has been validated through its implementation and deployment on a real-life RTWN testbed. Extensive simulation-based experiments have also been performed to evaluate the effectiveness of RD-PaS, especially in large-scale network settings

    Real-Time Guarantees For Wireless Networked Sensing And Control

    Get PDF
    Wireless networks are increasingly being explored for mission-critical sensing and control in emerging domains such as connected and automated vehicles, Industrial 4.0, and smart city. In wireless networked sensing and control (WSC) systems, reliable and real- time delivery of sensed data plays a crucial role for the control decision since out-of-date information will often be irrelevant and even leads to negative effects to the system. Since WSC differs dramatically from the traditional real-time (RT) systems due to its wireless nature, new design objective and perspective are necessary to achieve real-time guarantees. First, we proposed Optimal Node Activation Multiple Access (ONAMA) scheduling protocol that activates as many nodes as possible while ensuring transmission reliability (in terms of packets delivery ratio). We implemented and tested ONAMA on two testbeds both with 120+ sensor nodes. Second, we proposed algorithms to address the problem of clustering heterogeneous reliability requirements into a limit set of service levels. Our solutions are optimal, and they also provide guaranteed reliability, which is critical for wireless sensing and control. Third, we proposed a probabilistic real-time wireless communication framework that effectively integrates real-time scheduling theory with wireless communication. The per- packet probabilistic real-time QoS was formally modeled. By R3 mapping, the upper-layer requirement and the lower-layer link reliability are translated into the number of trans- mission opportunities needed. By optimal real-time communication scheduling as well as admission test and traffic period optimization, the system utilization is maximized while the schedulability is maintained. Finally, we further investigated the problem of how to minimize delay variation (i.e., jitter) while ensuring that packets are delivered by their deadlines

    Taming Uncertainties In Real-Time Routing For Wireless Networked Sensing And Control

    Get PDF
    Real-time routing is a basic element of closed-loop, real-time sensing and control, but it is challenging due to dynamic, uncertain link/path delays. The probabilistic nature of link/path delays makes the basic problem of computing the probabilistic distribution of path delays NP-hard, yet quantifying probabilistic path delays is a basic element of real-time routing and may well have to be executed by resource-constrained devices in a distributed manner; the highly-varying nature of link/path delays makes it necessary to adapt to in-situ delay conditions in real-time routing, but it has been observed that delay-based routing can lead to instability, estimation error, and low data delivery performance in general. To address these challenges, we propose the emph{Multi-Timescale Estimation (MTE)} method; by accurately estimating the mean and variance of per-packet transmission time and by adapting to fast-varying queueing in an accurate, agile manner, MTE enables accurate, agile, and efficient estimation of probabilistic path delay bounds in a distributed manner. Based on MTE, we propose the emph{Multi-Timescale Adaptation (MTA)} routing protocol; MTA integrates the stability of an ETX-based directed-acyclic-graph (DAG) with the agility of spatiotemporal data flow control within the DAG to ensure real-time data delivery in the presence of dynamics and uncertainties. We also address the challenges of implementing MTE and MTA in resource-constrained devices such as TelosB motes. We evaluate the performance of MTA using the NetEye and Indriya sensor network testbeds. We find that MTA significantly outperforms existing protocols, e.g., improving deadline success ratio by 89% and reducing transmission cost by a factor of 9.7

    A hybrid prediction model for energy-efficient data collection in wireless sensor networks

    Get PDF
    Energy consumption because of unnecessary data transmission is a significant problem over wireless sensor networks (WSNs). Dealing with this problem leads to increasing the lifetime of any network and improved network feasibility for real time applications. Building on this, energy-efficient data collection is becoming a necessary requirement for WSN applications comprising of low powered sensing devices. In these applications, data clustering and prediction methods that utilize symmetry correlations in the sensor data can be used for reducing the energy consumption of sensor nodes for persistent data collection. In this work, a hybrid model based on decision tree (DT), autoregressive integrated moving average (ARIMA), and Kalman filtering (KF) methods is proposed to predict the data sampling requirement of sensor nodes to reduce unnecessary data transmission. To perform data sampling predictions in the WSNs efficiently, clustering and data aggregation to each cluster head are utilized, mainly to reduce the processing overheads generating the prediction model. Simulation experiments, comparisons, and performance evaluations conducted in various cases show that the forecasting accuracy of our approach can outperform existing Gaussian and probabilistic based models to provide better energy efficiency due to reducing the number of packet transmissions

    A-Stack : a TDMA framework for reliable, real-time and high data-rate wireless sensor networks

    Get PDF
    The reduced size, power consumption and cost of wireless sensors make them an excitingtechnology for many monitoring and control applications. However, developing reliable, realtimeand high data-rate applications is challenging due to time-variations and interference inwireless channels and the medium access delays. For high data-rate and real-time applications,time division multiple access (TDMA) based medium access approach performs better ascompared to carrier sense multiple access (CSMA) based approach. On the other hand,implementation of TDMA in resource constrained wireless nodes requires difficult designdecisions. This document presents A-Stack, a real-time protocol stack for time synchronized, multichanneland slotted communication in multi-hop wireless networks. The stack is developed tomeet the reliability and accuracy requirements of real-time applications such as wirelessautomation and wireless structural health monitoring. A-Stack provides a flexible developmentenvironment for such applications by ensuring deterministic reliability and latency. It includesMAC, routing and time-synchronization protocols as well as a node-joining algorithm. Thestack is further supplemented with PC tools for optimizing the network as per the targetapplication for easy prototyping. This document explains the design and operational aspects ofA-Stack. Various deployment scenarios as well as long term system and communicationreliability tests are presented in the document

    Trustworthiness in Mobile Cyber Physical Systems

    Get PDF
    Computing and communication capabilities are increasingly embedded in diverse objects and structures in the physical environment. They will link the ‘cyberworld’ of computing and communications with the physical world. These applications are called cyber physical systems (CPS). Obviously, the increased involvement of real-world entities leads to a greater demand for trustworthy systems. Hence, we use "system trustworthiness" here, which can guarantee continuous service in the presence of internal errors or external attacks. Mobile CPS (MCPS) is a prominent subcategory of CPS in which the physical component has no permanent location. Mobile Internet devices already provide ubiquitous platforms for building novel MCPS applications. The objective of this Special Issue is to contribute to research in modern/future trustworthy MCPS, including design, modeling, simulation, dependability, and so on. It is imperative to address the issues which are critical to their mobility, report significant advances in the underlying science, and discuss the challenges of development and implementation in various applications of MCPS
    corecore