594 research outputs found

    Stochastische Analyse und lernbasierte Algorithmen zur Ressourcenbereitstellung in optischen Netzwerken

    Get PDF
    The unprecedented growth in Internet traffic has driven the innovations in provisioning of optical resources as per the need of bandwidth demands such that the resource utilization and spectrum efficiency could be maximized. With the advent of the next generation flexible optical transponders and switches, the flexible-grid-based elastic optical network (EON) is foreseen as an alternative to the widely deployed fixed-grid-based wavelength division multiplexing networks. At the same time, the flexible resource provisioning also raises new challenges for EONs. One such challenge is the spectrum fragmentation. As network traffic varies over time, spectrum gets fragmented due to the setting up and tearing down of non-uniform bandwidth requests over aligned (i.e., continuous) and adjacent (i.e., contiguous) spectrum slices, which leads to a non-optimal spectrum allocation, and generally results in higher blocking probability and lower spectrum utilization in EONs. To address this issue, the allocation and reallocation of optical resources are required to be modeled accurately, and managed efficiently and intelligently. The modeling of routing and spectrum allocation in EONs with the spectrum contiguity and spectrum continuity constraints is well-investigated, but existing models do not consider the fragmentation issue resulted by these constraints and non-uniform bandwidth demands. This thesis addresses this issue and considers both the constraints to computing exact blocking probabilities in EONs with and without spectrum conversion, and with spectrum reallocation (known as defragmentation) for the first time using the Markovian approach. As the exact network models are not scalable with respect to the network size and capacity, this thesis proposes load-independent and load-dependent approximate models to compute approximate blocking probabilities in EONs. Results show that the connection blocking due to fragmentation can be reduced by using a spectrum conversion or a defragmentation approach, but it can not be eliminated in a mesh network topology. This thesis also deals with the important network resource provisioning task in EONs. To this end, it first presents algorithmic solutions to efficiently allocate and reallocate spectrum resources using the fragmentation factor along spectral, time, and spatial dimensions. Furthermore, this thesis highlights the role of machine learning techniques in alleviating issues in static provisioning of optical resources, and presents two use-cases: handling time-varying traffic in optical data center networks, and reducing energy consumption and allocating spectrum proportionately to traffic classes in fiber-wireless networks.Die flexible Nutzung des Spektrums bringt in Elastischen Optischen Netze (EON) neue Herausforderungen mit sich, z.B., die Fragmentierung des Spektrums. Die Fragmentierung entsteht dadurch, dass die Netzwerkverkehrslast sich im Laufe der Zeit ändert und so wird das Spektrum aufgrund des Verbindungsaufbaus und -abbaus fragmentiert. Das für eine Verbindung notwendige Spektrum wird durch aufeinander folgende (kontinuierliche) und benachbarte (zusammenhängende) Spektrumsabschnitte (Slots) gebildet. Dies führt nach den zahlreichen Reservierungen und Freisetzungen des Spektrums zu einer nicht optimalen Zuordnung, die in einer höheren Blockierungs-wahrscheinlichkeit der neuen Verbindungsanfragen und einer geringeren Auslastung von EONs resultiert. Um dieses Problem zu lösen, müssen die Zuweisung und Neuzuordnung des Spektrums in EONs genau modelliert und effizient sowie intelligent verwaltet werden. Diese Arbeit beschäftigt sich mit dem Fragmentierungsproblem und berücksichtigt dabei die beiden Einschränkungen: Kontiguität und Kontinuität. Unter diesen Annahmen wurden analytische Modelle zur Berechnung einer exakten Blockierungswahrscheinlichkeit in EONs mit und ohne Spektrumskonvertierung erarbeitet. Außerdem umfasst diese Arbeit eine Analyse der Blockierungswahrscheinlichkeit im Falle einer Neuzuordnung des Sprektrums (Defragmentierung). Diese Blockierungsanalyse wird zum ersten Mal mit Hilfe der Markov-Modelle durchgeführt. Da die exakten analytischen Modelle hinsichtlich der Netzwerkgröße und -kapazität nicht skalierbar sind, werden in dieser Dissertation verkehrslastunabhängige und verkehrslastabhängige Approximationsmodelle vorgestellt. Diese Modelle bieten eine Näherung der Blockierungswahrscheinlichkeiten in EONs. Die Ergebnisse zeigen, dass die Blockierungswahrscheinlichkeit einer Verbindung aufgrund von einer Fragmentierung des Spektrums durch die Verwendung einer Spektrumkonvertierung oder eines Defragmentierungsverfahrens verringert werden kann. Eine effiziente Bereitstellung der optischen Netzwerkressourcen ist eine wichtige Aufgabe von EONs. Deswegen befasst sich diese Arbeit mit algorithmischen Lösungen, die Spektrumressource mithilfe des Fragmentierungsfaktors von Spektral-, Zeit- und räumlichen Dimension effizient zuweisen und neu zuordnen. Darüber hinaus wird die Rolle des maschinellen Lernens (ML) für eine verbesserte Bereitstellung der optischen Ressourcen untersucht und das ML basierte Verfahren mit der statischen Ressourcenzuweisung verglichen. Dabei werden zwei Anwendungsbeispiele vorgestellt und analysiert: der Umgang mit einer zeitveränderlichen Verkehrslast in optischen Rechenzentrumsnetzen, und eine Verringerung des Energieverbrauchs und die Zuweisung des Spektrums proportional zu Verkehrsklassen in kombinierten Glasfaser-Funknetzwerken

    Wavelength reconfigurability for next generation optical access networks

    Get PDF
    Next generation optical access networks should not only increase the capacity but also be able to redistribute the capacity on the fly in order to manage larger variations in traffic patterns. Wavelength reconfigurability is the instrument to enable such capability of network-wide bandwidth redistribution since it allows dynamic sharing of both wavelengths and timeslots in WDM-TDM optical access networks. However, reconfigurability typically requires tunable lasers and tunable filters at the user side, resulting in cost-prohibitive optical network units (ONU). In this dissertation, I propose a novel concept named cyclic-linked flexibility to address the cost-prohibitive problem. By using the cyclic-linked flexibility, the ONU needs to switch only within a subset of two pre-planned wavelengths, however, the cyclic-linked structure of wavelengths allows free bandwidth to be shifted to any wavelength by a rearrangement process. Rearrangement algorithm are developed to demonstrate that the cyclic-linked flexibility performs close to the fully flexible network in terms of blocking probability, packet delay, and packet loss. Furthermore, the evaluation shows that the rearrangement process has a minimum impact to in-service ONUs. To realize the cyclic-linked flexibility, a family of four physical architectures is proposed. PRO-Access architecture is suitable for new deployments and disruptive upgrades in which the network reach is not longer than 20 km. WCL-Access architecture is suitable for metro-access merger with the reach up to 100 km. PSB-Access architecture is suitable to implement directly on power-splitter-based PON deployments, which allows coexistence with current technologies. The cyclically-linked protection architecture can be used with current and future PON standards when network protection is required

    Watching your call:breaking VoLTE privacy in LTE/5G networks

    Get PDF

    AirSync: Enabling Distributed Multiuser MIMO with Full Spatial Multiplexing

    Full text link
    The enormous success of advanced wireless devices is pushing the demand for higher wireless data rates. Denser spectrum reuse through the deployment of more access points per square mile has the potential to successfully meet the increasing demand for more bandwidth. In theory, the best approach to density increase is via distributed multiuser MIMO, where several access points are connected to a central server and operate as a large distributed multi-antenna access point, ensuring that all transmitted signal power serves the purpose of data transmission, rather than creating "interference." In practice, while enterprise networks offer a natural setup in which distributed MIMO might be possible, there are serious implementation difficulties, the primary one being the need to eliminate phase and timing offsets between the jointly coordinated access points. In this paper we propose AirSync, a novel scheme which provides not only time but also phase synchronization, thus enabling distributed MIMO with full spatial multiplexing gains. AirSync locks the phase of all access points using a common reference broadcasted over the air in conjunction with a Kalman filter which closely tracks the phase drift. We have implemented AirSync as a digital circuit in the FPGA of the WARP radio platform. Our experimental testbed, comprised of two access points and two clients, shows that AirSync is able to achieve phase synchronization within a few degrees, and allows the system to nearly achieve the theoretical optimal multiplexing gain. We also discuss MAC and higher layer aspects of a practical deployment. To the best of our knowledge, AirSync offers the first ever realization of the full multiuser MIMO gain, namely the ability to increase the number of wireless clients linearly with the number of jointly coordinated access points, without reducing the per client rate.Comment: Submitted to Transactions on Networkin

    Intelligent Advancements in Location Management and C-RAN Power-Aware Resource Allocation

    Get PDF
    The evolving of cellular networks within the last decade continues to focus on delivering a robust and reliable means to cope with the increasing number of users and demanded capacity. Recent advancements of cellular networks such as Long-Term Evolution (LTE) and LTE-advanced offer a remarkable high bandwidth connectivity delivered to the users. Signalling overhead is one of the vital issues that impact the cellular behavior. Causing a significant load in the core network hence effecting the cellular network reliability. Moreover, the signaling overhead decreases the Quality of Experience (QoE) of users. The first topic of the thesis attempts to reduce the signaling overhead by developing intelligent location management techniques that minimize paging and Tracking Area Update (TAU) signals. Consequently, the corresponding optimization problems are formulated. Furthermore, several techniques and heuristic algorithms are implemented to solve the formulated problems. Additionally, network scalability has become a challenging aspect that has been hindered by the current network architecture. As a result, Cloud Radio Access Networks (C-RANs) have been introduced as a new trend in wireless technologies to address this challenge. C-RAN architecture consists of: Remote Radio Head (RRH), Baseband Unit (BBU), and the optical network connecting them. However, RRH-to-BBU resource allocation can cause a significant downgrade in efficiency, particularly the allocation of the computational resources in the BBU pool to densely deployed small cells. This causes a vast increase in the power consumption and wasteful resources. Therefore, the second topic of the thesis discusses C-RAN infrastructure, particularly where a pool of BBUs are gathered to process the computational resources. We argue that there is a need of optimizing the processing capacity in order to minimize the power consumption and increase the overall system efficiency. Consequently, the optimal allocation of computational resources between the RRHs and BBUs is modeled. Furthermore, in order to get an optimal RRH-to-BBU allocation, it is essential to have an optimal physical resource allocation for users to determine the required computational resources. For this purpose, an optimization problem that models the assignment of resources at these two levels (from physical resources to users and from RRHs to BBUs) is formulated

    Communications

    Get PDF
    The communications sector of an economy comprises a range of technologies, physical media, and institutions/rules that facilitate the storage of information through means other than a society\u27s oral tradition and the transmission of that information over distances beyond the normal reach of human conversation. This chapter provides data on the historical evolution of a disparate range of industries and institutions contributing to the movement and storage of information in the United States over the past two centuries. These include the U.S. Postal Service, the newspaper industry, book publishing, the telegraph, wired and cellular telephone service, radio and television, and the Internet
    • …
    corecore