94,157 research outputs found

    Code wars: steganography, signals intelligence, and terrorism

    Get PDF
    This paper describes and discusses the process of secret communication known as steganography. The argument advanced here is that terrorists are unlikely to be employing digital steganography to facilitate secret intra-group communication as has been claimed. This is because terrorist use of digital steganography is both technically and operationally implausible. The position adopted in this paper is that terrorists are likely to employ low-tech steganography such as semagrams and null ciphers instead

    Hybrid Arabic text steganography

    Get PDF
    An improved method for Arabic text steganography is introduced in this paper. This method hides an Arabic text inside another based on a hybrid approach. Both Kashida and Arabic Diacritics are used to hide the Arabic text inside another text. In this improved method, the secret message is divided into two parts, the first part is to be hidden by the Kashida method, and the second is to be hidden by the Diacritics or Harakat method. For security purposes, we benefitted from the natural existence of Diacritics as a characteristic of Arabic written language, as used to represent vowel sounds. The paper exploits the possibility of hiding data in Fathah diacritic and Kashida punctuation marks, adjusting previously presented schemes that are based on a single method only. Here, the secret message is divided into two parts, the cover text is prepared, and then we apply the Harakat method on the first part. The Kashida method is applied on the second part, and then the two parts are combined. When the hidden ‘StegoText’ is received, a split mechanism is used to recover the original message. The described hybrid Arabic StegoText showed higher capacity and security with promising results compared to other methods

    Quantum-noise--randomized data-encryption for WDM fiber-optic networks

    Full text link
    We demonstrate high-rate randomized data-encryption through optical fibers using the inherent quantum-measurement noise of coherent states of light. Specifically, we demonstrate 650Mbps data encryption through a 10Gbps data-bearing, in-line amplified 200km-long line. In our protocol, legitimate users (who share a short secret-key) communicate using an M-ry signal set while an attacker (who does not share the secret key) is forced to contend with the fundamental and irreducible quantum-measurement noise of coherent states. Implementations of our protocol using both polarization-encoded signal sets as well as polarization-insensitive phase-keyed signal sets are experimentally and theoretically evaluated. Different from the performance criteria for the cryptographic objective of key generation (quantum key-generation), one possible set of performance criteria for the cryptographic objective of data encryption is established and carefully considered.Comment: Version 2: Some errors have been corrected and arguments refined. To appear in Physical Review A. Version 3: Minor corrections to version

    Blind Reconciliation

    Get PDF
    Information reconciliation is a crucial procedure in the classical post-processing of quantum key distribution (QKD). Poor reconciliation efficiency, revealing more information than strictly needed, may compromise the maximum attainable distance, while poor performance of the algorithm limits the practical throughput in a QKD device. Historically, reconciliation has been mainly done using close to minimal information disclosure but heavily interactive procedures, like Cascade, or using less efficient but also less interactive -just one message is exchanged- procedures, like the ones based in low-density parity-check (LDPC) codes. The price to pay in the LDPC case is that good efficiency is only attained for very long codes and in a very narrow range centered around the quantum bit error rate (QBER) that the code was designed to reconcile, thus forcing to have several codes if a broad range of QBER needs to be catered for. Real world implementations of these methods are thus very demanding, either on computational or communication resources or both, to the extent that the last generation of GHz clocked QKD systems are finding a bottleneck in the classical part. In order to produce compact, high performance and reliable QKD systems it would be highly desirable to remove these problems. Here we analyse the use of short-length LDPC codes in the information reconciliation context using a low interactivity, blind, protocol that avoids an a priori error rate estimation. We demonstrate that 2x10^3 bits length LDPC codes are suitable for blind reconciliation. Such codes are of high interest in practice, since they can be used for hardware implementations with very high throughput.Comment: 22 pages, 8 figure
    corecore