103 research outputs found

    SCMA with Low Complexity Symmetric Codebook Design for Visible Light Communication

    Full text link
    Sparse code multiple access (SCMA) is attracting significant research interests currently, which is considered as a promising multiple access technique for 5G systems. It serves as a good candidate for the future communication network with massive nodes due to its capability of handling user overloading. Introducing SCMA to visible light communication (VLC) can provide another opportunity on design of transmission protocols for the communication network with massive nodes due to the limited communication range of VLC, which reduces the interference intensity. However, when applying SCMA in VLC systems, we need to modify the SCMA codebook to accommodate the real and positive signal requirement for VLC.We apply multidimensional constellation design methods to SCMA codebook. To reduce the design complexity, we also propose a symmetric codebook design. For all the proposed design approaches, the minimum Euclidean distance aims to be maximized. Our symmetric codebook design can reduce design and detection complexity simultaneously. Simulation results show that our design implies fast convergence with respect to the number of iterations, and outperforms the design that simply modifies the existing approaches to VLC signal requirements

    Turbo-like Iterative Multi-user Receiver Design for 5G Non-orthogonal Multiple Access

    Full text link
    Non-orthogonal multiple access (NoMA) as an efficient way of radio resource sharing has been identified as a promising technology in 5G to help improving system capacity, user connectivity, and service latency in 5G communications. This paper provides a brief overview of the progress of NoMA transceiver study in 3GPP, with special focus on the design of turbo-like iterative multi-user (MU) receivers. There are various types of MU receivers depending on the combinations of MU detectors and interference cancellation (IC) schemes. Link-level simulations show that expectation propagation algorithm (EPA) with hybrid parallel interference cancellation (PIC) is a promising MU receiver, which can achieve fast convergence and similar performance as message passing algorithm (MPA) with much lower complexity.Comment: Accepted by IEEE 88th Vehicular Technology Conference (IEEE VTC-2018 Fall), 5 pages, 6 figure

    Investigation on Evolving Single-Carrier NOMA into Multi-Carrier NOMA in 5G

    Full text link
    © 2013 IEEE. Non-orthogonal multiple access (NOMA) is one promising technology, which provides high system capacity, low latency, and massive connectivity, to address several challenges in the fifth-generation wireless systems. In this paper, we first reveal that the NOMA techniques have evolved from single-carrier NOMA (SC-NOMA) into multi-carrier NOMA (MC-NOMA). Then, we comprehensively investigated on the basic principles, enabling schemes and evaluations of the two most promising MC-NOMA techniques, namely sparse code multiple access (SCMA) and pattern division multiple access (PDMA). Meanwhile, we consider that the research challenges of SCMA and PDMA might be addressed with the stimulation of the advanced and matured progress in SC-NOMA. Finally, yet importantly, we investigate the emerging applications, and point out the future research trends of the MC-NOMA techniques, which could be straightforwardly inspired by the various deployments of SC-NOMA

    V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks

    Full text link
    Benefited from the widely deployed infrastructure, the LTE network has recently been considered as a promising candidate to support the vehicle-to-everything (V2X) services. However, with a massive number of devices accessing the V2X network in the future, the conventional OFDM-based LTE network faces the congestion issues due to its low efficiency of orthogonal access, resulting in significant access delay and posing a great challenge especially to safety-critical applications. The non-orthogonal multiple access (NOMA) technique has been well recognized as an effective solution for the future 5G cellular networks to provide broadband communications and massive connectivity. In this article, we investigate the applicability of NOMA in supporting cellular V2X services to achieve low latency and high reliability. Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed to tackle the technical hurdles in designing high spectral efficient scheduling and resource allocation schemes in the ultra dense topology. We then extend it to a more general V2X broadcasting system. Other NOMA-based extended V2X applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin

    Contention Based SCMA for NB-IoT Uplink Communication using Finite Memory Sequential Learning

    Get PDF
    • …
    corecore