13,231 research outputs found

    A Molecular Implementation of the Least Mean Squares Estimator

    Full text link
    In order to function reliably, synthetic molecular circuits require mechanisms that allow them to adapt to environmental disturbances. Least mean squares (LMS) schemes, such as commonly encountered in signal processing and control, provide a powerful means to accomplish that goal. In this paper we show how the traditional LMS algorithm can be implemented at the molecular level using only a few elementary biomolecular reactions. We demonstrate our approach using several simulation studies and discuss its relevance to synthetic biology.Comment: Molecular circuits, synthetic biology, least mean squares estimator, adaptive system

    Message Passing and Metabolism

    Get PDF
    Active inference is an increasingly prominent paradigm in theoretical biology. It frames the dynamics of living systems as if they were solving an inference problem. This rests upon their flow towards some (non-equilibrium) steady state—or equivalently, their maximisation of the Bayesian model evidence for an implicit probabilistic model. For many models, these self-evidencing dynamics manifest as messages passed among elements of a system. Such messages resemble synaptic communication at a neuronal network level but could also apply to other network structures. This paper attempts to apply the same formulation to biochemical networks. The chemical computation that occurs in regulation of metabolism relies upon sparse interactions between coupled reactions, where enzymes induce conditional dependencies between reactants. We will see that these reactions may be viewed as the movement of probability mass between alternative categorical states. When framed in this way, the master equations describing such systems can be reformulated in terms of their steady-state distribution. This distribution plays the role of a generative model, affording an inferential interpretation of the underlying biochemistry. Finally, we see that—in analogy with computational neurology and psychiatry—metabolic disorders may be characterized as false inference under aberrant prior beliefs

    Uniform sampling of steady states in metabolic networks: heterogeneous scales and rounding

    Get PDF
    The uniform sampling of convex polytopes is an interesting computational problem with many applications in inference from linear constraints, but the performances of sampling algorithms can be affected by ill-conditioning. This is the case of inferring the feasible steady states in models of metabolic networks, since they can show heterogeneous time scales . In this work we focus on rounding procedures based on building an ellipsoid that closely matches the sampling space, that can be used to define an efficient hit-and-run (HR) Markov Chain Monte Carlo. In this way the uniformity of the sampling of the convex space of interest is rigorously guaranteed, at odds with non markovian methods. We analyze and compare three rounding methods in order to sample the feasible steady states of metabolic networks of three models of growing size up to genomic scale. The first is based on principal component analysis (PCA), the second on linear programming (LP) and finally we employ the lovasz ellipsoid method (LEM). Our results show that a rounding procedure is mandatory for the application of the HR in these inference problem and suggest that a combination of LEM or LP with a subsequent PCA perform the best. We finally compare the distributions of the HR with that of two heuristics based on the Artificially Centered hit-and-run (ACHR), gpSampler and optGpSampler. They show a good agreement with the results of the HR for the small network, while on genome scale models present inconsistencies.Comment: Replacement with major revision
    • …
    corecore