63,358 research outputs found

    A comparative study on improvement of image compression method using hybrid of DCT and DWT techniques with huffman encoding

    Get PDF
    Image is an important media used to visualize or represent a message in daily conversation between users device. Nowadays, there are many application that involve image processing such as security system, communication system and medical system where images are processed digitally. Image is mainly known for its large data capacity especially high resolution image. Thus, image compression is important to reduce storage size and achieve specific application goals. In this research, hybrid of Discrete Cosine Transform (DCT), Discrete Wavelet Transform (DWT) and Huffman compression technique is proposed. Stand-alone technique of DCT, DWT and Huffman are execute before hybrid all techniques together. Besides, the performance in determining the quality of image, compression ratio and computing time are carefully observed by evaluating the result of Mean Square Error (MSE), Power Signal to Noise Ratio (PSNR), Structural Similarity (SSIM), compression ratio and time of compression and decompression. It is found that the proposed hybrid technique able to reduce storage size with 3.72:1 compression ratio and short computing time with 5 second. The quality of image is slightly reduce compared to original image which are calculated based on MSE, PSNR and SSIM value with 52.74, 30.92 dB and 0.90, respectively. In conclusion, DWT technique has the ability in compressing image size within short time while DCT and Huffman are able to reduce data loss during compression and maintaining good quality of image. Therefore, DCT, DWT and Huffman method are combined together to support each other in producing good performance

    Source and Physical-Layer Network Coding for Correlated Two-Way Relaying

    Full text link
    In this paper, we study a half-duplex two-way relay channel (TWRC) with correlated sources exchanging bidirectional information. In the case, when both sources have the knowledge of correlation statistics, a source compression with physical-layer network coding (SCPNC) scheme is proposed to perform the distributed compression at each source node. When only the relay has the knowledge of correlation statistics, we propose a relay compression with physical-layer network coding (RCPNC) scheme to compress the bidirectional messages at the relay. The closed-form block error rate (BLER) expressions of both schemes are derived and verified through simulations. It is shown that the proposed schemes achieve considerable improvements in both error performance and throughput compared with the conventional non-compression scheme in correlated two-way relay networks (CTWRNs).Comment: 15 pages, 6 figures. IET Communications, 201

    Iterative Slepian-Wolf Decoding and FEC Decoding for Compress-and-Forward Systems

    Get PDF
    While many studies have concentrated on providing theoretical analysis for the relay assisted compress-and-forward systems little effort has yet been made to the construction and evaluation of a practical system. In this paper a practical CF system incorporating an error-resilient multilevel Slepian-Wolf decoder is introduced and a novel iterative processing structure which allows information exchanging between the Slepian-Wolf decoder and the forward error correction decoder of the main source message is proposed. In addition, a new quantization scheme is incorporated as well to avoid the complexity of the reconstruction of the relay signal at the final decoder of the destination. The results demonstrate that the iterative structure not only reduces the decoding loss of the Slepian-Wolf decoder, it also improves the decoding performance of the main message from the source

    Statistical mechanics of lossy data compression using a non-monotonic perceptron

    Full text link
    The performance of a lossy data compression scheme for uniformly biased Boolean messages is investigated via methods of statistical mechanics. Inspired by a formal similarity to the storage capacity problem in the research of neural networks, we utilize a perceptron of which the transfer function is appropriately designed in order to compress and decode the messages. Employing the replica method, we analytically show that our scheme can achieve the optimal performance known in the framework of lossy compression in most cases when the code length becomes infinity. The validity of the obtained results is numerically confirmed.Comment: 9 pages, 5 figures, Physical Review

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    How to Solve the Fronthaul Traffic Congestion Problem in H-CRAN?

    Get PDF
    The design of efficient wireless fronthaul connections for future heterogeneous networks incorporating emerging paradigms such as heterogeneous cloud radio access network (H-CRAN) has become a challenging task that requires the most effective utilization of fronthaul network resources. In this paper, we propose and analyze possible solutions to facilitate the fronthaul traffic congestion in the scenario of Coordinated Multi-Point (CoMP) for 5G cellular traffic which is expected to reach ZetaByte by 2017. In particular, we propose to use distributed compression to reduce the fronthaul traffic for H-CRAN. Unlike the conventional approach where each coordinating point quantizes and forwards its own observation to the processing centre, these observations are compressed before forwarding. At the processing centre, the decompression of the observations and the decoding of the user messages are conducted in a joint manner. Our results reveal that, in both dense and ultra-dense urban small cell deployment scenarios, the usage of distributed compression can efficiently reduce the required fronthaul rate by more than 50% via joint operation
    corecore