245 research outputs found

    Electrokinetic Lattice Boltzmann solver coupled to Molecular Dynamics: application to polymer translocation

    Full text link
    We develop a theoretical and computational approach to deal with systems that involve a disparate range of spatio-temporal scales, such as those comprised of colloidal particles or polymers moving in a fluidic molecular environment. Our approach is based on a multiscale modeling that combines the slow dynamics of the large particles with the fast dynamics of the solvent into a unique framework. The former is numerically solved via Molecular Dynamics and the latter via a multi-component Lattice Boltzmann. The two techniques are coupled together to allow for a seamless exchange of information between the descriptions. Being based on a kinetic multi-component description of the fluid species, the scheme is flexible in modeling charge flow within complex geometries and ranging from large to vanishing salt concentration. The details of the scheme are presented and the method is applied to the problem of translocation of a charged polymer through a nanopores. In the end, we discuss the advantages and complexities of the approach

    Discrete solution of the electrokinetic equations

    Get PDF
    We present a robust scheme for solving the electrokinetic equations. This goal is achieved by combining the lattice-Boltzmann method (LB) with a discrete solution of the convection-diffusion equation for the different charged and neutral species that compose the fluid. The method is based on identifying the elementary fluxes between nodes, which ensures the absence of spurious fluxes in equilibrium. We show how the model is suitable to study electro-osmotic flows. As an illustration, we show that, by introducing appropriate dynamic rules in the presence of solid interfaces, we can compute the sedimentation velocity (and hence the sedimentation potential) of a charged sphere. Our approach does not assume linearization of the Poisson-Boltzmann equation and allows us for a wide variation of the Peclet number.Comment: 24 pages, 7 figure

    Introduction to colloidal dispersions in external fields

    Full text link
    Progress in the research area of colloidal dispersions in external fields within the last years is reviewed. Colloidal dispersions play a pivotal role as model systems for phase transitions in classical statistical mechanics. In recent years the leading role of colloids to realize model systems has become evident not only for equilibrium situations but also far away from equilibrium. By using external fields (such as shear flow, electric, magnetic or laseroptical fields as well as confinement), a colloidal suspension can be brought into nonequilibrium in a controlled way. Various kinds of equilibrium and nonequilibrium phenomena explored by colloidal dispersions are described providing also a guide and summary to this special issue. Particular emphasis is put on the comparison of real-space experiments, computer simulations and statistical theories.Comment: 11 pages, 2 figures, Eur. Phys. J. Special Topics (accepted

    The lattice Boltzmann modeling of two-phase electroosmotic flow in microchannels

    Get PDF
    Technial Session - 2C Multi-phase Flows(1): no. S2C5In this paper, a numerical framework based on the lattice Boltzmann method is presented for modeling two-phase electroosmotic flow within microchannels. In the model, lattice Boltzmann schemes are designed for all the governing equations involved such as Navier-Stokes equations for momentum transport, Nernst-Planck equations for ion transport, the Cahn-Hilliard equation for the immiscible fluid interface motion, and Poisson equation for the electric potential referring the model proposed in Shao’s work [6]. Related boundary schemes are also proposed to modeling the slip effect on the microchannel surfaces. The theoretical analysis shows that the model has second order accuracy.published_or_final_versio
    • …
    corecore