18 research outputs found

    Global parametrization of range image sets

    Get PDF
    We present a method to globally parameterize a surface represented by height maps over a set of planes (range images). In contrast to other parametrization techniques, we do not start with a manifold mesh. The parametrization we compute defines a manifold structure, it is seamless and globally smooth, can be aligned to geometric features and shows good quality in terms of angle and area preservation, comparable to current parametrization techniques for meshes. Computing such global seamless parametrization makes it possible to perform quad remeshing, texture mapping and texture synthesis and many other types of geometry processing operations. Our approach is based on a formulation of the Poisson equation on a manifold structure defined for the surface by the range images. Construction of such global parametrization requires only a way to project surface data onto a set of planes, and can be applied directly to implicit surfaces, nonmanifold surfaces, very large meshes, and collections of range scans. We demonstrate application of our technique to all these geometry types

    Quad Meshing

    Get PDF
    Triangle meshes have been nearly ubiquitous in computer graphics, and a large body of data structures and geometry processing algorithms based on them has been developed in the literature. At the same time, quadrilateral meshes, especially semi-regular ones, have advantages for many applications, and significant progress was made in quadrilateral mesh generation and processing during the last several years. In this State of the Art Report, we discuss the advantages and problems of techniques operating on quadrilateral meshes, including surface analysis and mesh quality, simplification, adaptive refinement, alignment with features, parametrization, and remeshing

    A Review of 3D Point Clouds Parameterization Methods

    Get PDF
    3D point clouds parameterization is a very important research topic in the fields of computer graphics and computer vision, which has many applications such as texturing, remeshing and morphing, etc. Different from mesh parameterization, point clouds parameterization is a more challenging task in general as there is normally no connectivity information between points. Due to this challenge, the papers on point clouds parameterization are not as many as those on mesh parameterization. To the best of our knowledge, there are no review papers about point clouds parameterization. In this paper, we present a survey of existing methods for parameterizing 3D point clouds. We start by introducing the applications and importance of point clouds parameterization before explaining some relevant concepts. According to the organization of the point clouds, we first divide point cloud parameterization methods into two groups: organized and unorganized ones. Since various methods for unorganized point cloud parameterization have been proposed, we further divide the group of unorganized point cloud parameterization methods into some subgroups based on the technique used for parameterization. The main ideas and properties of each method are discussed aiming to provide an overview of various methods and help with the selection of different methods for various applications

    Numerical and Geometric Optimizations for Surface and Tolerance Modeling

    Get PDF
    Optimization techniques are widely used in many research and engineering areas. This dissertation presents numerical and geometric optimization methods for solving geometric and solid modeling problems. Geometric optimization methods are designed for manufacturing process planning, which optimizes the process by changing dependency relationships among geometric primitives from the original design diagram. Geometric primitives are used to represent part features, and dependencies in the dimensions between parts are represented by a topological graph. The ordering of these dependencies can have a significant effect on the tolerance zones in the part. To obtain tolerance zones from the dependencies, the conventional parametric method of tolerance analysis is de-composed into a set of geometric computations, which are combined and cascaded to obtain the tolerance zones in the geometric representations. Geometric optimization is applied to the topological graph in order to find a solution that provides not only an optimal dimensioning scheme but also an optimal plan for manufacturing the physical part. The applications of our method include tolerance analysis, dimension scheme optimization, and process planning. Two numerical optimization methods are proposed for local and global surface parameterizations. One is the nonlinear optimization, which is used for building the local field-aware parameterization. Given a local chart of the surface, a two-phase method is proposed, which generates a folding-free parameterization while still being aware of the geodesic metric. The parameterization method is applied in a view-dependent 3D painting system, which constitutes a local, adaptive and interactive painting environment. The other is the mixed-integer quadratic optimization, which is used for generating a quad mesh from a given triangular mesh. With a given cross field, the computation of parametric coordinates is formulated to be a mixed-integer optimization problem, which parameterizes the surface with good quality by adding redundant integer variables. The mixed integer system is solved more efficiently by an improved adaptive rounding solver. To obtain the final quadrangular mesh, an isoline tracing method and a breadth-first traversal mesh generation method are proposed so that the final mesh result has face information, which is useful for further model processing

    Variational Methods and Numerical Algorithms for Geometry Processing

    Get PDF
    In this work we address the problem of shape partitioning which enables the decomposition of an arbitrary topology object into smaller and more manageable pieces called partitions. Several applications in Computer Aided Design (CAD), Computer Aided Manufactury (CAM) and Finite Element Analysis (FEA) rely on object partitioning that provides a high level insight of the data useful for further processing. In particular, we are interested in 2-manifold partitioning, since the boundaries of tangible physical objects can be mathematically defined by two-dimensional manifolds embedded into three-dimensional Euclidean space. To that aim, a preliminary shape analysis is performed based on shape characterizing scalar/vector functions defined on a closed Riemannian 2-manifold. The detected shape features are used to drive the partitioning process into two directions – a human-based partitioning and a thickness-based partitioning. In particular, we focus on the Shape Diameter Function that recovers volumetric information from the surface thus providing a natural link between the object’s volume and its boundary, we consider the spectral decomposition of suitably-defined affinity matrices which provides multi-dimensional spectral coordinates of the object’s vertices, and we introduce a novel basis of sparse and localized quasi-eigenfunctions of the Laplace-Beltrami operator called Lp Compressed Manifold Modes. The partitioning problem, which can be considered as a particular inverse problem, is formulated as a variational regularization problem whose solution provides the so-called piecewise constant/smooth partitioning function. The functional to be minimized consists of a fidelity term to a given data set and a regularization term which promotes sparsity, such as for example, Lp norm with p ∈ (0, 1) and other parameterized, non-convex penalty functions with positive parameter, which controls the degree of non-convexity. The proposed partitioning variational models, inspired on the well-known Mumford Shah models for recovering piecewise smooth/constant functions, incorporate a non-convex regularizer for minimizing the boundary lengths. The derived non-convex non-smooth optimization problems are solved by efficient numerical algorithms based on Proximal Forward-Backward Splitting and Alternating Directions Method of Multipliers strategies, also employing Convex Non-Convex approaches. Finally, we investigate the application of surface partitioning to patch-based surface quadrangulation. To that aim the 2-manifold is first partitioned into zero-genus patches that capture the object’s arbitrary topology, then for each patch a quad-based minimal surface is created and evolved by a Lagrangian-based PDE evolution model to the original shape to obtain the final semi-regular quad mesh. The evolution is supervised by asymptotically area-uniform tangential redistribution for the quads

    Geometric modeling and optimization over regular domains for graphics and visual computing

    Get PDF
    The effective construction of parametric representation of complicated geometric objects can facilitate many design, analysis, and simulation tasks in Computer-Aided Design (CAD), Computer-Aided Manufacturing (CAM), and Computer-Aided Engineering (CAE). Given a 3D shape, the procedure of finding such a parametric representation upon a canonical domain is called geometric parameterization. Regular geometric regions, such as polycubes and spheres, are desirable domains for parameterization. Parametric representations defined upon regular geometric domains have many desirable mathematical properties and can facilitate or simplify various surface/solid modeling and processing computation. This dissertation studies the construction of parameterization on regular geometric domains and explores their applications in shape modeling and computer-aided design. Specifically, we studies (1) the surface parameterization on the spherical domain for closed genus-zero surfaces; (2) the surface parameterization on the polycube domain for general closed surfaces; and (3) the volumetric parameterization for 3D-manifolds embedded in 3D Euclidean space. We propose novel computational models to solve these geometric problems. Our computational models reduce to nonlinear optimizations with various geometric constraints. Hence, we also need to explore effective optimization algorithms. The main contributions of this dissertation are three-folded. (1) We developed an effective progressive spherical parameterization algorithm, with an efficient nonlinear optimization scheme subject to the spherical constraint. Compared with the state-of-the-art spherical mapping algorithms, our algorithm demonstrates the advantages of great efficiency, lower distortion, and guaranteed bijectiveness, and we show its applications in spherical harmonic decomposition and shape analysis. (2) We propose a first topology-preserving polycube domain optimization algorithm that simultaneously optimizes polycube domain together with the parameterization to balance the mapping distortion and domain simplicity. We develop effective nonlinear geometric optimization algorithms dealing with variables with and without derivatives. This polycube parameterization algorithm can benefit the regular quadrilateral mesh generation and cross-surface parameterization. (3) We develop a novel quaternion-based optimization framework for 3D frame field construction and volumetric parameterization computation. We demonstrate our constructed 3D frame field has better smoothness, compared with state-of-the-art algorithms, and is effective in guiding low-distortion volumetric parameterization and high-quality hexahedral mesh generation

    Shape-Up: Shaping Discrete Geometry with Projections

    Get PDF
    We introduce a unified optimization framework for geometry processing based on shape constraints. These constraints preserve or prescribe the shape of subsets of the points of a geometric data set, such as polygons, one-ring cells, volume elements, or feature curves. Our method is based on two key concepts: a shape proximity function and shape projection operators. The proximity function encodes the distance of a desired least-squares fitted elementary target shape to the corresponding vertices of the 3D model. Projection operators are employed to minimize the proximity function by relocating vertices in a minimal way to match the imposed shape constraints. We demonstrate that this approach leads to a simple, robust, and efficient algorithm that allows implementing a variety of geometry processing applications, simply by combining suitable projection operators. We show examples for computing planar and circular meshes, shape space exploration, mesh quality improvement, shape-preserving deformation, and conformal parametrization. Our optimization framework provides a systematic way of building new solvers for geometry processing and produces similar or better results than state-of-the-art methods

    Constructing Desirable Scalar Fields for Morse Analysis on Meshes

    Get PDF
    Morse theory is a powerful mathematical tool that uses the local differential properties of a manifold to make conclusions about global topological aspects of the manifold. Morse theory has been proven to be a very useful tool in computer graphics, geometric data processing and understanding. This work is divided into two parts. The first part is concerned with constructing geometry and symmetry aware scalar functions on a triangulated 22-manifold. To effectively apply Morse theory to discrete manifolds, one needs to design scalar functions on them with certain properties such as respecting the symmetry and the geometry of the surface and having the critical points of the scalar function coincide with feature or symmetry points on the surface. In this work, we study multiple methods that were suggested in the literature to construct such functions such as isometry invariant scalar functions, Poisson fields and discrete conformal factors. We suggest multiple refinements to each family of these functions and we propose new methods to construct geometry and symmetry-aware scalar functions using mainly the theory of the Laplace-Beltrami operator. Our proposed methods are general and can be applied in many areas such as parametrization, shape analysis, symmetry detection and segmentation. In the second part of the thesis we utilize Morse theory to give topologically consistent segmentation algorithms
    corecore