315 research outputs found

    A RBF partition of unity collocation method based on finite difference for initial-boundary value problems

    Full text link
    Meshfree radial basis function (RBF) methods are popular tools used to numerically solve partial differential equations (PDEs). They take advantage of being flexible with respect to geometry, easy to implement in higher dimensions, and can also provide high order convergence. Since one of the main disadvantages of global RBF-based methods is generally the computational cost associated with the solution of large linear systems, in this paper we focus on a localizing RBF partition of unity method (RBF-PUM) based on a finite difference (FD) scheme. Specifically, we propose a new RBF-PUM-FD collocation method, which can successfully be applied to solve time-dependent PDEs. This approach allows to significantly decrease ill-conditioning of traditional RBF-based methods. Moreover, the RBF-PUM-FD scheme results in a sparse matrix system, reducing the computational effort but maintaining at the same time a high level of accuracy. Numerical experiments show performances of our collocation scheme on two benchmark problems, involving unsteady convection-diffusion and pseudo-parabolic equations

    Numerical investigation of Differential Biological-Models via GA-Kansa Method Inclusive Genetic Strategy

    Full text link
    In this paper, we use Kansa method for solving the system of differential equations in the area of biology. One of the challenges in Kansa method is picking out an optimum value for Shape parameter in Radial Basis Function to achieve the best result of the method because there are not any available analytical approaches for obtaining optimum Shape parameter. For this reason, we design a genetic algorithm to detect a close optimum Shape parameter. The experimental results show that this strategy is efficient in the systems of differential models in biology such as HIV and Influenza. Furthermore, we prove that using Pseudo-Combination formula for crossover in genetic strategy leads to convergence in the nearly best selection of Shape parameter.Comment: 42 figures, 23 page

    Collocation Method using Compactly Supported Radial Basis Function for Solving Volterra's Population Model

    Full text link
    In this paper, indirect collocation approach based on compactly supported radial basis function is applied for solving Volterras population model. The method reduces the solution of this problem to the solution of a system of algebraic equations. Volterras model is a non-linear integro-differential equation where the integral term represents the effect of toxin. To solve the problem, we use the well-known CSRBF: Wendland3,5. Numerical results and residual norm 2 show good accuracy and rate of convergence.Comment: 8 pages , 1 figure. arXiv admin note: text overlap with arXiv:1008.233

    A high-order approximation method for semilinear parabolic equations on spheres

    Get PDF
    We describe a novel discretisation method for numerically solving (systems of) semilinear parabolic equations on Euclidean spheres. The new approximation method is based upon a discretisation in space using spherical basis functions and can be of arbitrary order. This, together with the fact that the solutions of semilinear parabolic problems are known to be infinitely smooth, at least locally in time, allows us to prove stability and convergence of the discretisation in a straight-forward way

    Solution of Heat Transfer and Fluid Flow problems using meshless Radial Basis Function method

    Full text link
    In the past, the world of numerical solutions for Heat Transfer and Fluid Flow problems has been dominated by Finite Element Method, Finite Difference Method, Finite Volume Method, and more recently the Boundary Element Method. These methods revolve around using a mesh or grid to solve problems. However, problems with irregular boundaries and domains can be difficult to properly discretize; In this thesis, heat transfer and fluid flow problems are solved using Radial Basis Functions. This method is meshless, easy to understand, and even easier to implement. Radial Basis Functions are used to solve lid-driven cavity flow, natural convection in a square enclosure, flow with forced convection over backward facing step and flow over an airfoil. Codes are developed using MATLAB. The results are compared with COMSOL and FLUENT, two popular commercial codes widely used. COMSOL is a finite element model while FLUENT is a finite volume-based code
    • …
    corecore