656 research outputs found

    Application of morphing technique with mesh-merging in rapid hull form generation

    Get PDF
    ABSTRACTMorphing is a geometric interpolation technique that is often used by the animation industry to transform one form into another seemingly seamlessly. It does this by producing a large number of ‘intermediate’ forms between the two ‘extreme’ or ‘parent’ forms. It has already been shown that morphing technique can be a powerful tool for form design and as such can be a useful addition to the armoury of product designers. Morphing procedure itself is simple and consists of straightforward linear interpolation. However, establishing the correspondence between vertices of the parent models is one of the most difficult and important tasks during a morphing process. This paper discusses the mesh-merging method employed for this process as against the already established mesh-regularising method. It has been found that the merging method minimises the need for manual manipulation, allowing automation to a large extent

    Evolutionary Computation Automated Design of Ship Hull Forms for the Industry 4.0 Era

    Get PDF
    As the marine industry moves towards the industry 4.0 era, the role of automated smart design is becoming increasingly significant. This offers an ability to produce highly customisable design and to integrate with the product-lifecycle process such as digitalised ship production and ship operations to in an efficient process. Currently, the hull form optimisation process is performed manually using `trial-and-error' approach, which is not efficient. Focusing on automated smart design, this paper introduces a hybrid evolutionary algorithm and morphing (HEAM). It works by mapping the entire hull form (phenotype) into a chromosome (genotype), which allows global shape modification using a novel 2D morphing method. By combining this 2D morphing and Genetic Algorithm (GA), it enables optimal hull designs to be produced more rapidly with no user intervention

    Prediksi Komponen Hambatan Total Kapal Fridsma Hull Menggunakan Metode Morphing Mesh

    Get PDF
    CFD adalah salah satu pendekatan numerik yang dapat digunakan untuk memecahkan permasalahan fluida. Dalam menganalis mengunakan metode CFD, hal pertama yang dilakukan adalah proses meshing. Meshing adalah proses di mana ruang geometri dari suatu objek dipecah menjadi ribuan atau lebih bentuk untuk menentukan bentuk fisik objek. Penelitian kali ini membahas teknik mesh pada Finite Volume Method (FVM) dengan persamaan RANS (Reynolds - Averaged Navier - Stokes). Model turbulen k-ε dan VOF (Volume of Fluid) digunakan untuk memodelkan fasa air dan udara. Penelitian kali ini menggunakan teknik morphing mesh untuk memproleh nilai hambatan, trim, dan heave. Verifikasi hasil metode CFD akan dibandingkan dengan experiment pada kapal Fridsma hull form pada kondisi air tenang. Hasil hambatan dari simulasi CFD pada kondisi air tenang menunjukkan bahwa pada kecepatan rendah, transisi dan kecepatan tinggi menunjukkan prosentase sampai dengan 10%. Nilai trim pada kecepatan rendah, transisi maupun pada kecepatan tinggi menunjukkan hasil prosentase sampai dengan 14%. Nilai heave pada kecepatan rendah, transisi maupun pada kecepatan tinggi menunjukkan prosentase sampai dengan 19%

    Snap-through behaviour of a bistable structure based on viscoelastically generated prestress

    Get PDF
    A novel form of shape-changing bistable structure has been successfully developed through the use of viscoelastically generated prestress. Bistability is achieved through pairs of deflecting viscoelastically prestressed polymeric matrix composite (VPPMC) strips, which are orientated to give opposing cylindrical configurations within a thin, flexible resin-impregnated fibreglass sheet. This arrangement enables the structure to ‘snap through’ between one of two states by external stimulation. Deflection from the VPPMC strips occurs through compressive stresses generated from the non-uniform spatial distribution of nylon 6,6 fibres undergoing viscoelastic recovery. In this study, snap-through behaviour of the bistable structure is investigated both experimentally and through finite element (FE) analysis. By using experimental results to calibrate FE parameter values, the modelling has facilitated investigation into the development of bistability and the influence of modulus ratio (fibreglass sheet: VPPMC strip) on the snap-through characteristics. Experimental results and FE simulation show good agreement with regard to snap-through behaviour of the bistable structure and from this, the bistability mechanisms are discussed

    PHYSICS-BASED SHAPE MORPHING AND PACKING FOR LAYOUT DESIGN

    Get PDF
    The packing problem, also named layout design, has found wide applications in the mechanical engineering field. In most cases, the shapes of the objects do not change during the packing process. However, in some applications such as vehicle layout design, shape morphing may be required for some specific components (such as water and fuel reservoirs). The challenge is to fit a component of sufficient size in the available space in a crowded environment (such as the vehicle under-hood) while optimizing the overall performance objectives of the vehicle and improving design efficiency. This work is focused on incorporating component shape design into the layout design process, i.e. finding the optimal locations and orientations of all the components within a specified volume, as well as the suitable shapes of selected ones. The first major research issue is to identify how to efficiently and accurately morph the shapes of components respecting the functional constraints. Morphing methods depend on the geometrical representation of the components. The traditional parametric representation may lend itself easily to modification, but it relies on assumption that the final approximate shape of the object is known, and therefore, the morphing freedom is very limited. To morph objects whose shape can be changed arbitrarily in layout design, a mesh based morphing method based on a mass-spring physical model is developed. For this method, there is no need to explicitly specify the deformations and the shape morphing freedom is not confined. The second research issue is how to incorporate component shape design into a layout design process. Handling the complete problem at once may be beyond our reach,therefore decomposition and multilevel approaches are used. At the system level, a genetic algorithm (GA) is applied to find the positions and orientations of the objects, while at the sub-system or component level, morphing is accomplished for select components. Although different packing applications may have different objectives and constraints, they all share some common issues. These include CAD model preprocessing for packing purpose, data format translation during the packing process if performance evaluation and morphing use different representation methods, efficiency of collision detection methods, etc. These common issues are all brought together under the framework of a general methodology for layout design with shape morphing. Finally, practical examples of vehicle under-hood/underbody layout design with the mass-spring physical model based shape morphing are demonstrated to illustrate the proposed approach before concluding and proposing continuing work

    Meshing generation strategy for prediction of ship resistance using CFD approach

    Get PDF
    Abstract: CFD is a numerical approach used to solve fluid problems. In the CFD simulation process, the meshing stage is crucial to produce high accuracy. Meshing is a process where the geometric space of an object is broken down into many nodes to translate the physical components that occur while representing the object’s physical shape. The research objective was to analyze the characteristics of the mesh technique in the Finite Volume Method (FVM) using the RANS (Reynolds - Averaged Navier - Stokes) equation. The numerical simulation approach used three mesh techniques, namely overset mesh, morphing mesh, and moving mesh. The k-ε turbulent model and VOF (Volume of Fluid) were used to model the water and air phases. The mesh technique approach in CFD simulation showed a pattern under experimental testing. This research showed the difference in value to the experimental results, namely by using the moving mesh method, the difference in resistance difference was 8% at high-speed conditions, the difference in trim value at overset mesh was 11%, and the difference in heave value with the moving mesh method was 14% at low speed. The conclusion reported that overset mesh had better than other mesh methods

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    Geometric Modelling and Deformation for Shape Optimization of Ship Hulls and Appendages

    Get PDF
    International audienceThe precise control of geometric models plays an important role in many domains such as computer-aided geometric design and numerical simulation. For shape optimization in computational fluid dynamics (CFD), the choice of control parameters and the way to deform a shape are critical.In this article, we describe a skeleton-based representation of shapes adapted for CFD simulation and automatic shape optimization. Instead of using the control points of a classic B-spline representation, we control the geometry in terms of architectural parameters. We assure valid shapeswith a strong shape consistency control. Deformations of the geometry are performed by solving optimization problems on the skeleton. Finally, a surface reconstruction method is proposed to evaluate the shape's performances with CFD solvers. We illustrate the approach on two problems: thefoil of an AC45 racing sail boat and the bulbous bow of a fishing trawler. For each case, we obtained a set of shape deformations and then we evaluated and analyzed the performances of the different shapes with CFD computations
    • …
    corecore