9,520 research outputs found

    Runge-Kutta-Gegenbauer explicit methods for advection-diffusion problems

    Get PDF
    In this paper, Runge-Kutta-Gegenbauer (RKG) stability polynomials of arbitrarily high order of accuracy are introduced in closed form. The stability domain of RKG polynomials extends in the the real direction with the square of polynomial degree, and in the imaginary direction as an increasing function of Gegenbauer parameter. Consequently, the polynomials are naturally suited to the construction of high order stabilized Runge-Kutta (SRK) explicit methods for systems of PDEs of mixed hyperbolic-parabolic type. We present SRK methods composed of LL ordered forward Euler stages, with complex-valued stepsizes derived from the roots of RKG stability polynomials of degree LL. Internal stability is maintained at large stage number through an ordering algorithm which limits internal amplification factors to 10L210 L^2. Test results for mildly stiff nonlinear advection-diffusion-reaction problems with moderate (≲1\lesssim 1) mesh P\'eclet numbers are provided at second, fourth, and sixth orders, with nonlinear reaction terms treated by complex splitting techniques above second order.Comment: 20 pages, 7 figures, 3 table

    pde2path - A Matlab package for continuation and bifurcation in 2D elliptic systems

    Full text link
    pde2path is a free and easy to use Matlab continuation/bifurcation package for elliptic systems of PDEs with arbitrary many components, on general two dimensional domains, and with rather general boundary conditions. The package is based on the FEM of the Matlab pdetoolbox, and is explained by a number of examples, including Bratu's problem, the Schnakenberg model, Rayleigh-Benard convection, and von Karman plate equations. These serve as templates to study new problems, for which the user has to provide, via Matlab function files, a description of the geometry, the boundary conditions, the coefficients of the PDE, and a rough initial guess of a solution. The basic algorithm is a one parameter arclength continuation with optional bifurcation detection and branch-switching. Stability calculations, error control and mesh-handling, and some elementary time-integration for the associated parabolic problem are also supported. The continuation, branch-switching, plotting etc are performed via Matlab command-line function calls guided by the AUTO style. The software can be downloaded from www.staff.uni-oldenburg.de/hannes.uecker/pde2path, where also an online documentation of the software is provided such that in this paper we focus more on the mathematics and the example systems

    In vitro compression of a soft tissue layer on a rigid foundation

    Get PDF
    In vitro compression studies have been performed on layers of porcine skin and fat. The tissue layers have been loaded by means of various indentors. Indentor displacements and interstitial fluid pressures have been measured. The results have been compared to finite element calculations with mixture elements. A qualitative agreement between calculations and measurements is found. The results support the hypothesis that skin and fat behave like solid/fluid mixtures
    • …
    corecore