1,850 research outputs found

    Bio-Inspired Load Balancing In Large-Scale WSNs Using Pheromone Signalling

    Get PDF
    Wireless sensor networks (WSNs) consist of multiple, distributed nodes each with limited resources. With their strict resource constraints and application-specific characteristics, WSNs contain many challenging tradeoffs. This paper proposes a bioinspired load balancing approach, based on pheromone signalling mechanisms, to solve the tradeoff between service availability and energy consumption. We explore the performance consequences of the pheromone-based load balancing approach using (1) a system-level simulator, (2) deployment of real sensor testbeds to provide a competitive analysis of these evaluation methodologies. The effectiveness of the proposed algorithm is evaluated with different scenario parameters and the required performance evaluation techniques are investigated on case studies based on sound sensors

    An Experimental Collective Intelligence Research Tool

    Get PDF
    The Collective Intelligence Research Tool (CIRT) is an experimental software and hardware research tool. It provides an inexpensive and efficient alternative research implementation that demonstrates simulations of the collective behaviour of self-organized systems, primarily social insects. The software focuses on 2D simulations of the woodchip-collecting behaviour of termites and 3D simulations of the building behaviour of wasps. The hardware simulation employs a Boe-Bot robot, which has the potential of simulating simple movements of a social insect, by extending its functionality through adding sensors and integrating a control chip

    State-of-the-art in aerodynamic shape optimisation methods

    Get PDF
    Aerodynamic optimisation has become an indispensable component for any aerodynamic design over the past 60 years, with applications to aircraft, cars, trains, bridges, wind turbines, internal pipe flows, and cavities, among others, and is thus relevant in many facets of technology. With advancements in computational power, automated design optimisation procedures have become more competent, however, there is an ambiguity and bias throughout the literature with regards to relative performance of optimisation architectures and employed algorithms. This paper provides a well-balanced critical review of the dominant optimisation approaches that have been integrated with aerodynamic theory for the purpose of shape optimisation. A total of 229 papers, published in more than 120 journals and conference proceedings, have been classified into 6 different optimisation algorithm approaches. The material cited includes some of the most well-established authors and publications in the field of aerodynamic optimisation. This paper aims to eliminate bias toward certain algorithms by analysing the limitations, drawbacks, and the benefits of the most utilised optimisation approaches. This review provides comprehensive but straightforward insight for non-specialists and reference detailing the current state for specialist practitioners

    A comparison of processing techniques for producing prototype injection moulding inserts.

    Get PDF
    This project involves the investigation of processing techniques for producing low-cost moulding inserts used in the particulate injection moulding (PIM) process. Prototype moulds were made from both additive and subtractive processes as well as a combination of the two. The general motivation for this was to reduce the entry cost of users when considering PIM. PIM cavity inserts were first made by conventional machining from a polymer block using the pocket NC desktop mill. PIM cavity inserts were also made by fused filament deposition modelling using the Tiertime UP plus 3D printer. The injection moulding trials manifested in surface finish and part removal defects. The feedstock was a titanium metal blend which is brittle in comparison to commodity polymers. That in combination with the mesoscale features, small cross-sections and complex geometries were considered the main problems. For both processing methods, fixes were identified and made to test the theory. These consisted of a blended approach that saw a combination of both the additive and subtractive processes being used. The parts produced from the three processing methods are investigated and their respective merits and issues are discussed

    Paradigms for biologically inspired design

    Get PDF
    Biologically inspired design is attracting increasing interest since it offers access to a huge biological repository of well proven design principles that can be used for developing new and innovative products. Biological phenomena can inspire product innovation in as diverse areas as mechanical engineering, medical engineering, nanotechnology, photonics, environmental protection and agriculture. However, a major obstacle for the wider use of biologically inspired design is the knowledge barrier that exist between the application engineers that have insight into how to design suitable products and the biologists with detailed knowledge and experience in understanding how biological organisms function in their environment. The biologically inspired design process can therefore be approached using different design paradigms depending on the dominant opportunities, challenges and knowledge characteristics. Design paradigms are typically characterized as either problem-driven, solution-driven, sustainability driven, bioreplication or a combination of two or more of them. The design paradigms represent different ways of overcoming the knowledge barrier and the present paper presents a review of their characterization and application
    • …
    corecore