129 research outputs found

    Development of a practical and mobile brain-computer communication device for profoundly paralyzed individuals

    Full text link
    Thesis (Ph.D.)--Boston UniversityBrain-computer interface (BCI) technology has seen tremendous growth over the past several decades, with numerous groundbreaking research studies demonstrating technical viability (Sellers et al., 2010; Silvoni et al., 2011). Despite this progress, BCIs have remained primarily in controlled laboratory settings. This dissertation proffers a blueprint for translating research-grade BCI systems into real-world applications that are noninvasive and fully portable, and that employ intelligent user interfaces for communication. The proposed architecture is designed to be used by severely motor-impaired individuals, such as those with locked-in syndrome, while reducing the effort and cognitive load needed to communicate. Such a system requires the merging of two primary research fields: 1) electroencephalography (EEG)-based BCIs and 2) intelligent user interface design. The EEG-based BCI portion of this dissertation provides a history of the field, details of our software and hardware implementation, and results from an experimental study aimed at verifying the utility of a BCI based on the steady-state visual evoked potential (SSVEP), a robust brain response to visual stimulation at controlled frequencies. The visual stimulation, feature extraction, and classification algorithms for the BCI were specially designed to achieve successful real-time performance on a laptop computer. Also, the BCI was developed in Python, an open-source programming language that combines programming ease with effective handling of hardware and software requirements. The result of this work was The Unlock Project app software for BCI development. Using it, a four-choice SSVEP BCI setup was implemented and tested with five severely motor-impaired and fourteen control participants. The system showed a wide range of usability across participants, with classification rates ranging from 25-95%. The second portion of the dissertation discusses the viability of intelligent user interface design as a method for obtaining a more user-focused vocal output communication aid tailored to motor-impaired individuals. A proposed blueprint of this communication "app" was developed in this dissertation. It would make use of readily available laptop sensors to perform facial recognition, speech-to-text decoding, and geo-location. The ultimate goal is to couple sensor information with natural language processing to construct an intelligent user interface that shapes communication in a practical SSVEP-based BCI

    An image processing decisional system for the Achilles tendon using ultrasound images

    Get PDF
    The Achilles Tendon (AT) is described as the largest and strongest tendon in the human body. As for any other organs in the human body, the AT is associated with some medical problems that include Achilles rupture and Achilles tendonitis. AT rupture affects about 1 in 5,000 people worldwide. Additionally, AT is seen in about 10 percent of the patients involved in sports activities. Today, ultrasound imaging plays a crucial role in medical imaging technologies. It is portable, non-invasive, free of radiation risks, relatively inexpensive and capable of taking real-time images. There is a lack of research that looks into the early detection and diagnosis of AT abnormalities from ultrasound images. This motivated the researcher to build a complete system which enables one to crop, denoise, enhance, extract the important features and classify AT ultrasound images. The proposed application focuses on developing an automated system platform. Generally, systems for analysing ultrasound images involve four stages, pre-processing, segmentation, feature extraction and classification. To produce the best results for classifying the AT, SRAD, CLAHE, GLCM, GLRLM, KPCA algorithms have been used. This was followed by the use of different standard and ensemble classifiers trained and tested using the dataset samples and reduced features to categorize the AT images into normal or abnormal. Various classifiers have been adopted in this research to improve the classification accuracy. To build an image decisional system, a 57 AT ultrasound images has been collected. These images were used in three different approaches where the Region of Interest (ROI) position and size are located differently. To avoid the imbalanced misleading metrics, different evaluation metrics have been adapted to compare different classifiers and evaluate the whole classification accuracy. The classification outcomes are evaluated using different metrics in order to estimate the decisional system performance. A high accuracy of 83% was achieved during the classification process. Most of the ensemble classifies worked better than the standard classifiers in all the three ROI approaches. The research aim was achieved and accomplished by building an image processing decisional system for the AT ultrasound images. This system can distinguish between normal and abnormal AT ultrasound images. In this decisional system, AT images were improved and enhanced to achieve a high accuracy of classification without any user intervention

    Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature

    Full text link
    [ES] El futuro de la imagen mĂ©dica estĂĄ ligado a la inteligencia artificial. El anĂĄlisis manual de imĂĄgenes mĂ©dicas es hoy en dĂ­a una tarea ardua, propensa a errores y a menudo inasequible para los humanos, que ha llamado la atenciĂłn de la comunidad de Aprendizaje AutomĂĄtico (AA). La Imagen por Resonancia MagnĂ©tica (IRM) nos proporciona una rica variedad de representaciones de la morfologĂ­a y el comportamiento de lesiones inaccesibles sin una intervenciĂłn invasiva arriesgada. Sin embargo, explotar la potente pero a menudo latente informaciĂłn contenida en la IRM es una tarea muy complicada, que requiere tĂ©cnicas de anĂĄlisis computacional inteligente. Los tumores del sistema nervioso central son una de las enfermedades mĂĄs crĂ­ticas estudiadas a travĂ©s de IRM. EspecĂ­ficamente, el glioblastoma representa un gran desafĂ­o, ya que, hasta la fecha, continua siendo un cĂĄncer letal que carece de una terapia satisfactoria. Del conjunto de caracterĂ­sticas que hacen del glioblastoma un tumor tan agresivo, un aspecto particular que ha sido ampliamente estudiado es su heterogeneidad vascular. La fuerte proliferaciĂłn vascular del glioblastoma, asĂ­ como su robusta angiogĂ©nesis han sido consideradas responsables de la alta letalidad de esta neoplasia. Esta tesis se centra en la investigaciĂłn y desarrollo del mĂ©todo Hemodynamic Tissue Signature (HTS): un mĂ©todo de AA no supervisado para describir la heterogeneidad vascular de los glioblastomas mediante el anĂĄlisis de perfusiĂłn por IRM. El mĂ©todo HTS se basa en el concepto de hĂĄbitat, que se define como una subregiĂłn de la lesiĂłn con un perfil de IRM que describe un comportamiento fisiolĂłgico concreto. El mĂ©todo HTS delinea cuatro hĂĄbitats en el glioblastoma: el hĂĄbitat HAT, como la regiĂłn mĂĄs perfundida del tumor con captaciĂłn de contraste; el hĂĄbitat LAT, como la regiĂłn del tumor con un perfil angiogĂ©nico mĂĄs bajo; el hĂĄbitat IPE, como la regiĂłn adyacente al tumor con Ă­ndices de perfusiĂłn elevados; y el hĂĄbitat VPE, como el edema restante de la lesiĂłn con el perfil de perfusiĂłn mĂĄs bajo. La investigaciĂłn y desarrollo de este mĂ©todo ha originado una serie de contribuciones enmarcadas en esta tesis. Primero, para verificar la fiabilidad de los mĂ©todos de AA no supervisados en la extracciĂłn de patrones de IRM, se realizĂł una comparativa para la tarea de segmentaciĂłn de gliomas de grado alto. Segundo, se propuso un algoritmo de AA no supervisado dentro de la familia de los Spatially Varying Finite Mixture Models. El algoritmo propone una densidad a priori basada en un Markov Random Field combinado con la funciĂłn probabilĂ­stica Non-Local Means, para codificar la idea de que pĂ­xeles vecinos tienden a pertenecer al mismo objeto. Tercero, se presenta el mĂ©todo HTS para describir la heterogeneidad vascular del glioblastoma. El mĂ©todo se ha aplicado a casos reales en una cohorte local de un solo centro y en una cohorte internacional de mĂĄs de 180 pacientes de 7 centros europeos. Se llevĂł a cabo una evaluaciĂłn exhaustiva del mĂ©todo para medir el potencial pronĂłstico de los hĂĄbitats HTS. Finalmente, la tecnologĂ­a desarrollada en la tesis se ha integrado en la plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofrece dos servicios: 1) segmentaciĂłn de tejidos de glioblastoma, y 2) evaluaciĂłn de la heterogeneidad vascular del tumor mediante el mĂ©todo HTS. Los resultados de esta tesis han sido publicados en diez contribuciones cientĂ­ficas, incluyendo revistas y conferencias de alto impacto en las ĂĄreas de InformĂĄtica MĂ©dica, EstadĂ­stica y Probabilidad, RadiologĂ­a y Medicina Nuclear y Aprendizaje AutomĂĄtico. TambiĂ©n se emitiĂł una patente industrial registrada en España, Europa y EEUU. Finalmente, las ideas originales concebidas en esta tesis dieron lugar a la creaciĂłn de ONCOANALYTICS CDX, una empresa enmarcada en el modelo de negocio de los companion diagnostics de compuestos farmacĂ©uticos.[EN] The future of medical imaging is linked to Artificial Intelligence (AI). The manual analysis of medical images is nowadays an arduous, error-prone and often unaffordable task for humans, which has caught the attention of the Machine Learning (ML) community. Magnetic Resonance Imaging (MRI) provides us with a wide variety of rich representations of the morphology and behavior of lesions completely inaccessible without a risky invasive intervention. Nevertheless, harnessing the powerful but often latent information contained in MRI acquisitions is a very complicated task, which requires computational intelligent analysis techniques. Central nervous system tumors are one of the most critical diseases studied through MRI. Specifically, glioblastoma represents a major challenge, as it remains a lethal cancer that, to date, lacks a satisfactory therapy. Of the entire set of characteristics that make glioblastoma so aggressive, a particular aspect that has been widely studied is its vascular heterogeneity. The strong vascular proliferation of glioblastomas, as well as their robust angiogenesis and extensive microvasculature heterogeneity have been claimed responsible for the high lethality of the neoplasm. This thesis focuses on the research and development of the Hemodynamic Tissue Signature (HTS) method: an unsupervised ML approach to describe the vascular heterogeneity of glioblastomas by means of perfusion MRI analysis. The HTS builds on the concept of habitats. A habitat is defined as a sub-region of the lesion with a particular MRI profile describing a specific physiological behavior. The HTS method delineates four habitats within the glioblastoma: the HAT habitat, as the most perfused region of the enhancing tumor; the LAT habitat, as the region of the enhancing tumor with a lower angiogenic profile; the potentially IPE habitat, as the non-enhancing region adjacent to the tumor with elevated perfusion indexes; and the VPE habitat, as the remaining edema of the lesion with the lowest perfusion profile. The research and development of the HTS method has generated a number of contributions to this thesis. First, in order to verify that unsupervised learning methods are reliable to extract MRI patterns to describe the heterogeneity of a lesion, a comparison among several unsupervised learning methods was conducted for the task of high grade glioma segmentation. Second, a Bayesian unsupervised learning algorithm from the family of Spatially Varying Finite Mixture Models is proposed. The algorithm integrates a Markov Random Field prior density weighted by the probabilistic Non-Local Means function, to codify the idea that neighboring pixels tend to belong to the same semantic object. Third, the HTS method to describe the vascular heterogeneity of glioblastomas is presented. The HTS method has been applied to real cases, both in a local single-center cohort of patients, and in an international retrospective cohort of more than 180 patients from 7 European centers. A comprehensive evaluation of the method was conducted to measure the prognostic potential of the HTS habitats. Finally, the technology developed in this thesis has been integrated into an online open-access platform for its academic use. The ONCOhabitats platform is hosted at https://www.oncohabitats.upv.es, and provides two main services: 1) glioblastoma tissue segmentation, and 2) vascular heterogeneity assessment of glioblastomas by means of the HTS method. The results of this thesis have been published in ten scientific contributions, including top-ranked journals and conferences in the areas of Medical Informatics, Statistics and Probability, Radiology & Nuclear Medicine and Machine Learning. An industrial patent registered in Spain, Europe and EEUU was also issued. Finally, the original ideas conceived in this thesis led to the foundation of ONCOANALYTICS CDX, a company framed into the business model of companion diagnostics for pharmaceutical compounds.[CA] El futur de la imatge mĂšdica estĂ  lligat a la intel·ligĂšncia artificial. L'anĂ lisi manual d'imatges mĂšdiques Ă©s hui dia una tasca Ă rdua, propensa a errors i sovint inassequible per als humans, que ha cridat l'atenciĂł de la comunitat d'Aprenentatge AutomĂ tic (AA). La Imatge per RessonĂ ncia MagnĂštica (IRM) ens proporciona una Ă mplia varietat de representacions de la morfologia i el comportament de lesions inaccessibles sense una intervenciĂł invasiva arriscada. Tanmateix, explotar la potent perĂČ sovint latent informaciĂł continguda a les adquisicions de IRM esdevĂ© una tasca molt complicada, que requereix tĂšcniques d'anĂ lisi computacional intel·ligent. Els tumors del sistema nerviĂłs central sĂłn una de les malalties mĂ©s crĂ­tiques estudiades a travĂ©s de IRM. EspecĂ­ficament, el glioblastoma representa un gran repte, ja que, fins hui, continua siguent un cĂ ncer letal que manca d'una terĂ pia satisfactĂČria. Del conjunt de caracterĂ­stiques que fan del glioblastoma un tumor tan agressiu, un aspecte particular que ha sigut Ă mpliament estudiat Ă©s la seua heterogeneĂŻtat vascular. La forta proliferaciĂł vascular dels glioblastomes, aixĂ­ com la seua robusta angiogĂšnesi han sigut considerades responsables de l'alta letalitat d'aquesta neoplĂ sia. Aquesta tesi es centra en la recerca i desenvolupament del mĂštode Hemodynamic Tissue Signature (HTS): un mĂštode d'AA no supervisat per descriure l'heterogeneĂŻtat vascular dels glioblastomas mitjançant l'anĂ lisi de perfusiĂł per IRM. El mĂštode HTS es basa en el concepte d'hĂ bitat, que es defineix com una subregiĂł de la lesiĂł amb un perfil particular d'IRM, que descriu un comportament fisiolĂČgic concret. El mĂštode HTS delinea quatre hĂ bitats dins del glioblastoma: l'hĂ bitat HAT, com la regiĂł mĂ©s perfosa del tumor amb captaciĂł de contrast; l'hĂ bitat LAT, com la regiĂł del tumor amb un perfil angiogĂšnic mĂ©s baix; l'hĂ bitat IPE, com la regiĂł adjacent al tumor amb Ă­ndexs de perfusiĂł elevats, i l'hĂ bitat VPE, com l'edema restant de la lesiĂł amb el perfil de perfusiĂł mĂ©s baix. La recerca i desenvolupament del mĂštode HTS ha originat una sĂšrie de contribucions emmarcades a aquesta tesi. Primer, per verificar la fiabilitat dels mĂštodes d'AA no supervisats en l'extracciĂł de patrons d'IRM, es va realitzar una comparativa en la tasca de segmentaciĂł de gliomes de grau alt. Segon, s'ha proposat un algorisme d'AA no supervisat dintre de la famĂ­lia dels Spatially Varying Finite Mixture Models. L'algorisme proposa un densitat a priori basada en un Markov Random Field combinat amb la funciĂł probabilĂ­stica Non-Local Means, per a codificar la idea que els pĂ­xels veĂŻns tendeixen a pertĂ nyer al mateix objecte semĂ ntic. Tercer, es presenta el mĂštode HTS per descriure l'heterogeneĂŻtat vascular dels glioblastomas. El mĂštode HTS s'ha aplicat a casos reals en una cohort local d'un sol centre i en una cohort internacional de mĂ©s de 180 pacients de 7 centres europeus. Es va dur a terme una avaluaciĂł exhaustiva del mĂštode per mesurar el potencial pronĂČstic dels hĂ bitats HTS. Finalment, la tecnologia desenvolupada en aquesta tesi s'ha integrat en una plataforma online ONCOhabitats (https://www.oncohabitats.upv.es). La plataforma ofereix dos serveis: 1) segmentaciĂł dels teixits del glioblastoma, i 2) avaluaciĂł de l'heterogeneĂŻtat vascular dels glioblastomes mitjançant el mĂštode HTS. Els resultats d'aquesta tesi han sigut publicats en deu contribucions cientĂ­fiques, incloent revistes i conferĂšncies de primer nivell a les Ă rees d'InformĂ tica MĂšdica, EstadĂ­stica i Probabilitat, Radiologia i Medicina Nuclear i Aprenentatge AutomĂ tic. TambĂ© es va emetre una patent industrial registrada a Espanya, Europa i els EEUU. Finalment, les idees originals concebudes en aquesta tesi van donar lloc a la creaciĂł d'ONCOANALYTICS CDX, una empresa emmarcada en el model de negoci dels companion diagnostics de compostos farmacĂšutics.En este sentido quiero agradecer a las diferentes instituciones y estructuras de ïŹnanciaciĂłn de investigaciĂłn que han contribuido al desarrollo de esta tesis. En especial quiero agradecer a la Universitat PolitĂšcnica de ValĂšncia, donde he desarrollado toda mi carrera acadĂšmica y cientĂ­ïŹca, asĂ­ como al Ministerio de Ciencia e InnovaciĂłn, al Ministerio de EconomĂ­a y Competitividad, a la ComisiĂłn Europea, al EIT Health Programme y a la fundaciĂłn Caixa ImpulseJuan AlbarracĂ­n, J. (2020). Unsupervised learning for vascular heterogeneity assessment of glioblastoma based on magnetic resonance imaging: The Hemodynamic Tissue Signature [Tesis doctoral]. Universitat PolitĂšcnica de ValĂšncia. https://doi.org/10.4995/Thesis/10251/149560TESI

    Diagnosis and Treatment of Small Bowel Disorders

    Get PDF
    Over the last few decades, remarkable progress has been made in understanding the aetiology and pathophysiology of diseases and many new theories emphasize the importance of the small bowel ‘ecosystem’ in the pathogenesis of acute and chronic illness. Emerging factors such as microbiome, stem cells, innate intestinal immunity and the enteric nervous system along with mucosal and endothelial barriers have key role in the development of gastrointestinal and extra-intestinal diseases. Therefore, the small intestine is considered key player in metabolic disease development, including diabetes mellitus, and other diet-related disorders such as celiac and non-celiac enteropathies. Another major field is drug metabolism and its interaction with microbiota. Moreover, the emergence of gut-brain, gut-liver and gut-blood barriers points toward the important role of small intestine in the pathogenesis of common disorders, such as liver disease, hypertension and neurodegenerative disease. However, the small bowel remains an organ that is difficult to fully access and assess and accurate diagnosis often poses a clinical challenge. Eventually, the therapeutic potential remains untapped. Therefore, it is due time to direct our interest towards the small intestine and unravel the interplay between small-bowel and other gastrointestinal (GI) and non-GI related maladies

    Heterogeneous recognition of bioacoustic signals for human-machine interfaces

    No full text
    Human-machine interfaces (HMI) provide a communication pathway between man and machine. Not only do they augment existing pathways, they can substitute or even bypass these pathways where functional motor loss prevents the use of standard interfaces. This is especially important for individuals who rely on assistive technology in their everyday life. By utilising bioacoustic activity, it can lead to an assistive HMI concept which is unobtrusive, minimally disruptive and cosmetically appealing to the user. However, due to the complexity of the signals it remains relatively underexplored in the HMI field. This thesis investigates extracting and decoding volition from bioacoustic activity with the aim of generating real-time commands. The developed framework is a systemisation of various processing blocks enabling the mapping of continuous signals into M discrete classes. Class independent extraction efficiently detects and segments the continuous signals while class-specific extraction exemplifies each pattern set using a novel template creation process stable to permutations of the data set. These templates are utilised by a generalised single channel discrimination model, whereby each signal is template aligned prior to classification. The real-time decoding subsystem uses a multichannel heterogeneous ensemble architecture which fuses the output from a diverse set of these individual discrimination models. This enhances the classification performance by elevating both the sensitivity and specificity, with the increased specificity due to a natural rejection capacity based on a non-parametric majority vote. Such a strategy is useful when analysing signals which have diverse characteristics, false positives are prevalent and have strong consequences, and when there is limited training data available. The framework has been developed with generality in mind with wide applicability to a broad spectrum of biosignals. The processing system has been demonstrated on real-time decoding of tongue-movement ear pressure signals using both single and dual channel setups. This has included in-depth evaluation of these methods in both offline and online scenarios. During online evaluation, a stimulus based test methodology was devised, while representative interference was used to contaminate the decoding process in a relevant and real fashion. The results of this research provide a strong case for the utility of such techniques in real world applications of human-machine communication using impulsive bioacoustic signals and biosignals in general

    Proceedings of ICMMB2014

    Get PDF

    Ecological Understanding through Transdisciplinary Art and Participatory Biology

    Get PDF
    Full version unavailable due to 3rd party copyright restrictionsIn this study evidence is presented that suggests transdisciplinary art practices and participatory biology programs may successfully increase public understanding of ecological phenomenon. As today’s environmental issues are often complex and large-scale, finding effective strategies that encourage public awareness and stewardship are paramount for long-term conservation of species and ecosystems. Although artists and biologists tend to stay confined to their professional boundaries, and their discourses largely remain inaccessible to larger audiences, arguments here are presented for a combined approach, which may disseminate knowledge about ecology to non-specialists through novel art-science participatory research and exhibitions. Moreover, historically several scientists utilized varied creative art forms to disseminate scientific insights to a larger populace of non-specialists, such strategies as engaging writings and visually provocative artworks may still be effective to captivate contemporary audiences. In addition such historic hybrid science-art practitioners may have laid a conceptual terrain for some of today’s transdisciplinary art and citizen science practices. Furthermore, seminal ecological artworks from the 20th Century by Joseph Beuys, Patricia Johanson and Hans Haacke utilized novel strategies to reach audiences with a message of wetland conservation, blurring boundaries between art, ecology and activism. More recently artists like Cornelia Hesse-Honegger, Helen and Newton Harrison and others have integrated biological research into their art practices, which resulted in new scientific discoveries. Through my own transdisciplinary artwork about frogs, data suggests that the visual strategies I employ were effective to increase non-specialist understanding of the ecological phenomenon of amphibian declines and deformations. In addition through my participatory biology programs, Public Bio-Art Laboratories and Eco-Actions, evidence suggests that non-specialists achieved an increased awareness of the challenges amphibians and ecosystems currently face. Likewise, that through such participatory citizen science research new scientific insights about the proximate causes for deformities in anuran amphibians at select localities in middle England and Quebec were achieved. Here laboratory and field evidence, generated with the aid of public volunteers, found that non-lethal predatory injury to tadpoles from odonate nymphs and some fishes resulted in permanent limb deformities in post-metamorphic anurans. From an environmental-education and larger conservation standpoint, these findings are very relevant as they offer novel strategies for experientially engaging non-specialist audiences while generating important insights into biological communities and wetland ecosystems
    • 

    corecore