1,144 research outputs found

    Mental Models of Verifiability in Voting

    Get PDF
    In order for voters to verify their votes, they have to carry out additional steps besides selecting a candidate and submitting their vote. In previous work, voters have been found to be confused about the concept of and motivation for verifiability in electronic voting when confronted with it. In order to better communicate verifiability to voters, we identify mental models of verifiability in voting using a questionnaire distributed online in Germany. The identified mental models are Trusting No Knowledge Observer Personal Involvement and Matching models. Within the same survey, we identify terms that can be used in place of ‘verify’ as well as security-relevant metaphors known to the voters that can be used to communicate verifiability

    Comparing "challenge-based" and "code-based" internet voting verification implementations

    Get PDF
    Internet-enabled voting introduces an element of invisibility and unfamiliarity into the voting process, which makes it very different from traditional voting. Voters might be concerned about their vote being recorded correctly and included in the final tally. To mitigate mistrust, many Internet-enabled voting systems build verifiability into their systems. This allows voters to verify that their votes have been cast as intended, stored as cast and tallied as stored at the conclusion of the voting period. Verification implementations have not been universally successful, mostly due to voter difficulties using them. Here, we evaluate two cast as intended verification approaches in a lab study: (1) "Challenge-Based" and (2) "Code-Based". We assessed cast-as-intended vote verification efficacy, and identified usability issues related to verifying and/or vote casting. We also explored acceptance issues post-verification, to see whether our participants were willing to engage with Internet voting in a real election. Our study revealed the superiority of the code-based approach, in terms of ability to verify effectively. In terms of real-life Internet voting acceptance, convenience encourages acceptance, while security concerns and complexity might lead to rejection

    What did I really vote for? On the usability of verifiable e-voting schemes

    Get PDF
    E-voting has been embraced by a number of countries, delivering benefits in terms of efficiency and accessibility. End-to-end verifiable e-voting schemes facilitate verification of the integrity of individual votes during the election process. In particular, methods for cast-as-intended verification enable voters to confirm that their cast votes have not been manipulated by the voting client. A well-known technique for effecting cast-as-intended verification is the Benaloh Challenge. The usability of this challenge is crucial because voters have to be actively engaged in the verification process. In this paper, we report on a usability evaluation of three different approaches of the Benaloh Challenge in the remote e-voting context. We performed a comparative user study with 95 participants. We conclude with a recommendation for which approaches should be provided to afford verification in real-world elections and suggest usability improvements

    User Experience Design for E-Voting: How mental models align with security mechanisms

    Get PDF
    This paper presents a mobile application for vote-casting and vote-verification based on the Selene e-voting protocol and explains how it was developed and implemented using the User Experience Design process. The resulting interface was tested with 38 participants, and user experience data was collected via questionnaires and semi-structured interviews on user experience and perceived security. Results concerning the impact of displaying security mechanisms on UX were presented in a complementary paper. Here we expand on this analysis by studying the mental models revealed during the interviews and compare them with theoretical security notions. Finally, we propose a list of improvements for designs of future voting protocols.Comment: E-Vote-ID 2019 TalTech Proceeding

    Electronic voting : 6th International Joint Conference, E-Vote-ID 2021, virtual event, October 5-8, 2021

    Get PDF
    This book constitutes the proceedings of the 6th International Conference on Electronic Voting, E-Vote-ID 2021, held online -due to COVID -19- in Bregenz, Austria, in October 2021. The 14 full papers presented were carefully reviewed and selected from 55 submissions. The conference collected the most relevant debates on the development of Electronic Voting, from aspects relating to security and usability through to practical experiences and applications of voting systems, as well as legal, social or political aspects

    Natural Strategic Abilities in Voting Protocols

    Get PDF
    Security properties are often focused on the technological side of the system. One implicitly assumes that the users will behave in the right way to preserve the property at hand. In real life, this cannot be taken for granted. In particular, security mechanisms that are difficult and costly to use are often ignored by the users, and do not really defend the system against possible attacks. Here, we propose a graded notion of security based on the complexity of the user's strategic behavior. More precisely, we suggest that the level to which a security property φ\varphi is satisfied can be defined in terms of (a) the complexity of the strategy that the voter needs to execute to make φ\varphi true, and (b) the resources that the user must employ on the way. The simpler and cheaper to obtain φ\varphi, the higher the degree of security. We demonstrate how the idea works in a case study based on an electronic voting scenario. To this end, we model the vVote implementation of the \Pret voting protocol for coercion-resistant and voter-verifiable elections. Then, we identify "natural" strategies for the voter to obtain receipt-freeness, and measure the voter's effort that they require. We also look at how hard it is for the coercer to compromise the election through a randomization attack

    Electronic Voting: 6th International Joint Conference, E-Vote-ID 2021, Virtual Event, October 5–8, 2021: proceedings

    Get PDF
    This volume contains the papers presented at E-Vote-ID 2021, the Sixth International Joint Conference on Electronic Voting, held during October 5–8, 2021. Due to the extraordinary situation brought about by the COVID-19, the conference was held online for the second consecutive edition, instead of in the traditional venue in Bregenz, Austria. The E-Vote-ID conference is the result of the merger of the EVOTE and Vote-ID conferences, with first EVOTE conference taking place 17 years ago in Austria. Since that conference in 2004, over 1000 experts have attended the venue, including scholars, practitioners, authorities, electoral managers, vendors, and PhD students. The conference focuses on the most relevant debates on the development of electronic voting, from aspects relating to security and usability through to practical experiences and applications of voting systems, also including legal, social, or political aspects, amongst others, and has turned out to be an important global referent in relation to this issue

    Individual Verifiability with Return Codes: Manipulation Detection Efficacy

    Get PDF
    Researchers advocate for end-to-end verifiable voting schemes to maximise election integrity. At E-Vote-ID 2021, Kulyk et al. proposed to extend the verifiable scheme used in Switzerland (called original scheme) by voting codes to improve it with respect to vote secrecy. While the authors evaluated the general usability of their proposal, they did not evaluate its efficacy with respect to manipulation detection by voters. To close this gap, we conducted a corresponding user study. Furthermore, we study the effect of a video intervention (describing the vote casting process including individual verifiabilty steps) on the manipulation detection rate. We found that 65% of those receiving the video detected the manipulation and informed the support. If we only consider those who stated they (partially) watched the video the rate is 75%. The detection rate for those not having provided the video is 63%. While these rates are significantly higher than the 10% detection rate reported in related work for the original system, we discuss how to further increase the detection rate

    Sixth International Joint Conference on Electronic Voting E-Vote-ID 2021. 5-8 October 2021

    Get PDF
    This volume contains papers presented at E-Vote-ID 2021, the Sixth International Joint Conference on Electronic Voting, held during October 5-8, 2021. Due to the extraordinary situation provoked by Covid-19 Pandemic, the conference is held online for second consecutive edition, instead of in the traditional venue in Bregenz, Austria. E-Vote-ID Conference resulted from the merging of EVOTE and Vote-ID and counting up to 17 years since the _rst E-Vote conference in Austria. Since that conference in 2004, over 1000 experts have attended the venue, including scholars, practitioners, authorities, electoral managers, vendors, and PhD Students. The conference collected the most relevant debates on the development of Electronic Voting, from aspects relating to security and usability through to practical experiences and applications of voting systems, also including legal, social or political aspects, amongst others; turning out to be an important global referent in relation to this issue. Also, this year, the conference consisted of: · Security, Usability and Technical Issues Track · Administrative, Legal, Political and Social Issues Track · Election and Practical Experiences Track · PhD Colloquium, Poster and Demo Session on the day before the conference E-VOTE-ID 2021 received 49 submissions, being, each of them, reviewed by 3 to 5 program committee members, using a double blind review process. As a result, 27 papers were accepted for its presentation in the conference. The selected papers cover a wide range of topics connected with electronic voting, including experiences and revisions of the real uses of E-voting systems and corresponding processes in elections. We would also like to thank the German Informatics Society (Gesellschaft für Informatik) with its ECOM working group and KASTEL for their partnership over many years. Further we would like to thank the Swiss Federal Chancellery and the Regional Government of Vorarlberg for their kind support. EVote- ID 2021 conference is kindly supported through European Union's Horizon 2020 projects ECEPS (grant agreement 857622) and mGov4EU (grant agreement 959072). Special thanks go to the members of the international program committee for their hard work in reviewing, discussing, and shepherding papers. They ensured the high quality of these proceedings with their knowledge and experience
    corecore