82 research outputs found

    Memristor-based Synaptic Networks and Logical Operations Using In-Situ Computing

    Get PDF
    We present new computational building blocks based on memristive devices. These blocks, can be used to implement either supervised or unsupervised learning modules. This is achieved using a crosspoint architecture which is an efficient array implementation for nanoscale two-terminal memristive devices. Based on these blocks and an experimentally verified SPICE macromodel for the memristor, we demonstrate that firstly, the Spike-Timing-Dependent Plasticity (STDP) can be implemented by a single memristor device and secondly, a memristor-based competitive Hebbian learning through STDP using a 1×10001\times 1000 synaptic network. This is achieved by adjusting the memristor's conductance values (weights) as a function of the timing difference between presynaptic and postsynaptic spikes. These implementations have a number of shortcomings due to the memristor's characteristics such as memory decay, highly nonlinear switching behaviour as a function of applied voltage/current, and functional uniformity. These shortcomings can be addressed by utilising a mixed gates that can be used in conjunction with the analogue behaviour for biomimetic computation. The digital implementations in this paper use in-situ computational capability of the memristor.Comment: 18 pages, 7 figures, 2 table

    Memristors

    Get PDF
    This Edited Volume Memristors - Circuits and Applications of Memristor Devices is a collection of reviewed and relevant research chapters, offering a comprehensive overview of recent developments in the field of Engineering. The book comprises single chapters authored by various researchers and edited by an expert active in the physical sciences, engineering, and technology research areas. All chapters are complete in itself but united under a common research study topic. This publication aims at providing a thorough overview of the latest research efforts by international authors on physical sciences, engineering, and technology,and open new possible research paths for further novel developments

    Phenomenological Modeling of Memristive Devices

    Full text link
    We present a computationally inexpensive yet accurate phenomenological model of memristive behavior in titanium dioxide devices by fitting experimental data. By design, the model predicts most accurately I-V relation at small non-disturbing electrical stresses, which is often the most critical range of operation for circuit modeling. While the choice of fitting functions is motivated by the switching and conduction mechanisms of particular titanium dioxide devices, the proposed modeling methodology is general enough to be applied to different types of memory devices which feature smooth non-abrupt resistance switching.Comment: 17 pages, 5 figure
    • …
    corecore