127 research outputs found

    Cellular Nonlinear Networks: optimized implementation on FPGA and applications to robotics

    Get PDF
    L'objectiu principal d'aquesta tesi consisteix a estudiar la factibilitat d'implementar un sensor càmera CNN amb plena funcionalitat basat en FPGA de baix cost adequat per a aplicacions en robots mòbils. L'estudi dels fonaments de les xarxes cel•lulars no lineals (CNNs) i la seva aplicació eficaç en matrius de portes programables (FPGAs) s'ha complementat, d'una banda amb el paral•lelisme que s'estableix entre arquitectura multi-nucli de les CNNs i els eixams de robots mòbils, i per l'altre banda amb la correlació dinàmica de CNNs i arquitectures memristive. A més, els memristors es consideren els substituts dels futurs dispositius de memòria flash per la seva capacitat d'integració d'alta densitat i el seu consum d'energia prop de zero. En el nostre cas, hem estat interessats en el desenvolupament d’FPGAs que han deixat de ser simples dispositius per a la creació ràpida de prototips ASIC per esdevenir complets dispositius reconfigurables amb integració de la memòria i els elements de processament general. En particular, s'han explorat com les arquitectures implementades CNN en FPGAs poden ser optimitzades en termes d’àrea ocupada en el dispositiu i el seu consum de potència. El nostre objectiu final ens ah portat a implementar de manera eficient una CNN-UM amb complet funcionament a un baix cost i baix consum sobre una FPGA amb tecnología flash. Per tant, futurs estudis sobre l’arquitectura eficient de la CNN sobre la FPGA i la interconnexió amb els robots comercials disponibles és un dels objectius d'aquesta tesi que se seguiran en les línies de futur exposades en aquest treball.El objetivo principal de esta tesis consiste en estudiar la factibilidad de implementar un sensor cámara CNN con plena funcionalidad basado en FPGA de bajo coste adecuado para aplicaciones en robots móviles. El estudio de los fundamentos de las redes celulares no lineales (CNNs) y su aplicación eficaz en matrices de puertas programables (FPGAs) se ha complementado, por un lado con el paralelismo que se establece entre arquitectura multi -núcleo de las CNNs y los enjambres de robots móviles, y por el otro lado con la correlación dinámica de CNNs y arquitecturas memristive. Además, los memristors se consideran los sustitutos de los futuros dispositivos de memoria flash por su capacidad de integración de alta densidad y su consumo de energía cerca de cero. En nuestro caso, hemos estado interesados en el desarrollo de FPGAs que han dejado de ser simples dispositivos para la creación rápida de prototipos ASIC para convertirse en completos dispositivos reconfigurables con integración de la memoria y los elementos de procesamiento general. En particular, se han explorado como las arquitecturas implementadas CNN en FPGAs pueden ser optimizadas en términos de área ocupada en el dispositivo y su consumo de potencia. Nuestro objetivo final nos ah llevado a implementar de manera eficiente una CNN-UM con completo funcionamiento a un bajo coste y bajo consumo sobre una FPGA con tecnología flash. Por lo tanto, futuros estudios sobre la arquitectura eficiente de la CNN sobre la FPGA y la interconexión con los robots comerciales disponibles es uno de los objetivos de esta tesis que se seguirán en las líneas de futuro expuestas en este trabajo.The main goal of this thesis consists in studying the feasibility to implement a full-functionality CNN camera sensor based on low-cost FPGA device suitable for mobile robotic applications. The study of Cellular Nonlinear Networks (CNNs) fundamentals and its efficient implementation on Field Programmable Gate Arrays (FPGAs) has been complemented, on one side with the parallelism established between multi-core CNN architecture and swarm of mobile robots, and on the other side with the dynamics correlation of CNNs and memristive architectures. Furthermore, memristors are considered the future substitutes of flash memory devices because of its capability of high density integration and its close to zero power consumption. In our case, we have been interested in the development of FPGAs that have ceased to be simple devices for ASIC fast prototyping to become complete reconfigurable devices embedding memory and processing elements. In particular, we have explored how the CNN architectures implemented on FPGAs can be optimized in terms of area occupied on the device or power consumption. Our final accomplishment has been implementing efficiently a fully functional reconfigurable CNN-UM on a low-cost low-power FPGA based on flash technology. Therefore, further studies on an efficient CNN architecture on FPGA and interfacing it with commercially-available robots is one of the objectives of this thesis that will be followed in the future directions exposed in this work

    Pavlov's dog associative learning demonstrated on synaptic-like organic transistors

    Full text link
    In this letter, we present an original demonstration of an associative learning neural network inspired by the famous Pavlov's dogs experiment. A single nanoparticle organic memory field effect transistor (NOMFET) is used to implement each synapse. We show how the physical properties of this dynamic memristive device can be used to perform low power write operations for the learning and implement short-term association using temporal coding and spike timing dependent plasticity based learning. An electronic circuit was built to validate the proposed learning scheme with packaged devices, with good reproducibility despite the complex synaptic-like dynamic of the NOMFET in pulse regime

    Architectures and Design of VLSI Machine Learning Systems

    Get PDF
    Quintillions of bytes of data are generated every day in this era of big data. Machine learning techniques are utilized to perform predictive analysis on these data, to reveal hidden relationships and dependencies and perform predictions of outcomes and behaviors. The obtained predictive models are used to interpret the existing data and predict new data information. Nowadays, most machine learning algorithms are realized by software programs running on general-purpose processors, which usually takes a huge amount of CPU time and introduces unbelievably high energy consumption. In comparison, a dedicated hardware design is usually much more efficient than software programs running on general-purpose processors in terms of runtime and energy consumption. Therefore, the objective of this dissertation is to develop efficient hardware architectures for mainstream machine learning algorithms, to provide a promising solution to addressing the runtime and energy bottlenecks of machine learning applications. However, it is a really challenging task to map complex machine learning algorithms to efficient hardware architectures. In fact, many important design decisions need to be made during the hardware development for efficient tradeoffs. In this dissertation, a parallel digital VLSI architecture for combined SVM training and classification is proposed. For the first time, cascade SVM, a powerful training algorithm, is leveraged to significantly improve the scalability of hardware-based SVM training and develop an efficient parallel VLSI architecture. The parallel SVM processors provide a significant training time speedup and energy reduction compared with the software SVM algorithm running on a general-purpose CPU. Furthermore, a liquid state machine based neuromorphic learning processor with integrated training and recognition is proposed. A novel theoretical measure of computational power is proposed to facilitate fast design space exploration of the recurrent reservoir. Three low-power techniques are proposed to improve the energy efficiency. Meanwhile, a 2-layer spiking neural network with global inhibition is realized on Silicon. In addition, we also present architectural design exploration of a brain-inspired digital neuromorphic processor architecture with memristive synaptic crossbar array, and highlight several synaptic memory access styles. Various analog-to-digital converter schemes have been investigated to provide new insights into the tradeoff between the hardware cost and energy consumption

    Simulation and implementation of novel deep learning hardware architectures for resource constrained devices

    Get PDF
    Corey Lammie designed mixed signal memristive-complementary metal–oxide–semiconductor (CMOS) and field programmable gate arrays (FPGA) hardware architectures, which were used to reduce the power and resource requirements of Deep Learning (DL) systems; both during inference and training. Disruptive design methodologies, such as those explored in this thesis, can be used to facilitate the design of next-generation DL systems

    Dynamic Power Management for Neuromorphic Many-Core Systems

    Full text link
    This work presents a dynamic power management architecture for neuromorphic many core systems such as SpiNNaker. A fast dynamic voltage and frequency scaling (DVFS) technique is presented which allows the processing elements (PE) to change their supply voltage and clock frequency individually and autonomously within less than 100 ns. This is employed by the neuromorphic simulation software flow, which defines the performance level (PL) of the PE based on the actual workload within each simulation cycle. A test chip in 28 nm SLP CMOS technology has been implemented. It includes 4 PEs which can be scaled from 0.7 V to 1.0 V with frequencies from 125 MHz to 500 MHz at three distinct PLs. By measurement of three neuromorphic benchmarks it is shown that the total PE power consumption can be reduced by 75%, with 80% baseline power reduction and a 50% reduction of energy per neuron and synapse computation, all while maintaining temporary peak system performance to achieve biological real-time operation of the system. A numerical model of this power management model is derived which allows DVFS architecture exploration for neuromorphics. The proposed technique is to be used for the second generation SpiNNaker neuromorphic many core system

    An FPGA-based system for generalised electron devices testing

    Get PDF
    Electronic systems are becoming more and more ubiquitous as our world digitises. Simultaneously, even basic components are experiencing a wave of improvements with new transistors, memristors, voltage/current references, data converters, etc, being designed every year by hundreds of R &D groups world-wide. To date, the workhorse for testing all these designs has been a suite of lab instruments including oscilloscopes and signal generators, to mention the most popular. However, as components become more complex and pin numbers soar, the need for more parallel and versatile testing tools also becomes more pressing. In this work, we describe and benchmark an FPGA system developed that addresses this need. This general purpose testing system features a 64-channel source-meter unit, and [Formula: see text] banks of 32 digital pins for digital I/O. We demonstrate that this bench-top system can obtain [Formula: see text] current noise floor, [Formula: see text] pulse delivery at [Formula: see text] and [Formula: see text] maximum current drive/channel. We then showcase the instrument's use in performing a selection of three characteristic measurement tasks: (a) current-voltage characterisation of a diode and a transistor, (b) fully parallel read-out of a memristor crossbar array and (c) an integral non-linearity test on a DAC. This work introduces a down-scaled electronics laboratory packaged in a single instrument which provides a shift towards more affordable, reliable, compact and multi-functional instrumentation for emerging electronic technologies

    Null Convention Logic applications of asynchronous design in nanotechnology and cryptographic security

    Get PDF
    This dissertation presents two Null Convention Logic (NCL) applications of asynchronous logic circuit design in nanotechnology and cryptographic security. The first application is the Asynchronous Nanowire Reconfigurable Crossbar Architecture (ANRCA); the second one is an asynchronous S-Box design for cryptographic system against Side-Channel Attacks (SCA). The following are the contributions of the first application: 1) Proposed a diode- and resistor-based ANRCA (DR-ANRCA). Three configurable logic block (CLB) structures were designed to efficiently reconfigure a given DR-PGMB as one of the 27 arbitrary NCL threshold gates. A hierarchical architecture was also proposed to implement the higher level logic that requires a large number of DR-PGMBs, such as multiple-bit NCL registers. 2) Proposed a memristor look-up-table based ANRCA (MLUT-ANRCA). An equivalent circuit simulation model has been presented in VHDL and simulated in Quartus II. Meanwhile, the comparison between these two ANRCAs have been analyzed numerically. 3) Presented the defect-tolerance and repair strategies for both DR-ANRCA and MLUT-ANRCA. The following are the contributions of the second application: 1) Designed an NCL based S-Box for Advanced Encryption Standard (AES). Functional verification has been done using Modelsim and Field-Programmable Gate Array (FPGA). 2) Implemented two different power analysis attacks on both NCL S-Box and conventional synchronous S-Box. 3) Developed a novel approach based on stochastic logics to enhance the resistance against DPA and CPA attacks. The functionality of the proposed design has been verified using an 8-bit AES S-box design. The effects of decision weight, bitstream length, and input repetition times on error rates have been also studied. Experimental results shows that the proposed approach enhances the resistance to against the CPA attack by successfully protecting the hidden key --Abstract, page iii
    corecore