792 research outputs found

    Modeling Algorithm Performance on Highly-threaded Many-core Architectures

    Get PDF
    The rapid growth of data processing required in various arenas of computation over the past decades necessitates extensive use of parallel computing engines. Among those, highly-threaded many-core machines, such as GPUs have become increasingly popular for accelerating a diverse range of data-intensive applications. They feature a large number of hardware threads with low-overhead context switches to hide the memory access latencies and therefore provide high computational throughput. However, understanding and harnessing such machines places great challenges on algorithm designers and performance tuners due to the complex interaction of threads and hierarchical memory subsystems of these machines. The achieved performance jointly depends on the parallelism exploited by the algorithm, the effectiveness of latency hiding, and the utilization of multiprocessors (occupancy). Contemporary work tries to model the performance of GPUs from various aspects with different emphasis and granularity. However, no model considers all of these factors together at the same time. This dissertation presents an analytical framework that jointly addresses parallelism, latency-hiding, and occupancy for both theoretical and empirical performance analysis of algorithms on highly-threaded many-core machines so that it can guide both algorithm design and performance tuning. In particular, this framework not only helps to explore and reduce the runtime configuration space for tuning kernel execution on GPUs, but also reflects performance bottlenecks and predicts how the runtime will trend as the problem and other parameters scale. The framework consists of a pair of analytical models with one focusing on higher-level asymptotic algorithm performance on GPUs and the other one emphasizing lower-level details about scheduling and runtime configuration. Based on the two models, we have conducted extensive analysis of a large set of algorithms. Two analysis provides interesting results and explains previously unexplained data. In addition, the two models are further bridged and combined as a consistent framework. The framework is able to provide an end-to-end methodology for algorithm design, evaluation, comparison, implementation, and prediction of real runtime on GPUs fairly accurately. To demonstrate the viability of our methods, the models are validated through data from implementations of a variety of classic algorithms, including hashing, Bloom filters, all-pairs shortest path, matrix multiplication, FFT, merge sort, list ranking, string matching via suffix tree/array, etc. We evaluate the models\u27 performance across a wide spectrum of parameters, data values, and machines. The results indicate that the models can be effectively used for algorithm performance analysis and runtime prediction on highly-threaded many-core machines

    Balanced Quantization: An Effective and Efficient Approach to Quantized Neural Networks

    Full text link
    Quantized Neural Networks (QNNs), which use low bitwidth numbers for representing parameters and performing computations, have been proposed to reduce the computation complexity, storage size and memory usage. In QNNs, parameters and activations are uniformly quantized, such that the multiplications and additions can be accelerated by bitwise operations. However, distributions of parameters in Neural Networks are often imbalanced, such that the uniform quantization determined from extremal values may under utilize available bitwidth. In this paper, we propose a novel quantization method that can ensure the balance of distributions of quantized values. Our method first recursively partitions the parameters by percentiles into balanced bins, and then applies uniform quantization. We also introduce computationally cheaper approximations of percentiles to reduce the computation overhead introduced. Overall, our method improves the prediction accuracies of QNNs without introducing extra computation during inference, has negligible impact on training speed, and is applicable to both Convolutional Neural Networks and Recurrent Neural Networks. Experiments on standard datasets including ImageNet and Penn Treebank confirm the effectiveness of our method. On ImageNet, the top-5 error rate of our 4-bit quantized GoogLeNet model is 12.7\%, which is superior to the state-of-the-arts of QNNs

    Hardware Acceleration of Network Intrusion Detection System Using FPGA

    Get PDF
    This thesis presents new algorithms and hardware designs for Signature-based Network Intrusion Detection System (SB-NIDS) optimisation exploiting a hybrid hardwaresoftware co-designed embedded processing platform. The work describe concentrates on optimisation of a complete SB-NIDS Snort application software on a FPGA based hardware-software target rather than on the implementation of a single functional unit for hardware acceleration. Pattern Matching Hardware Accelerator (PMHA) based on Bloom filter was designed to optimise SB-NIDS performance for execution on a Xilinx MicroBlaze soft-core processor. The Bloom filter approach enables the potentially large number of network intrusion attack patterns to be efficiently represented and searched primarily using accesses to FPGA on-chip memory. The thesis demonstrates, the viability of hybrid hardware-software co-designed approach for SB-NIDS. Future work is required to investigate the effects of later generation FPGA technology and multi-core processors in order to clearly prove the benefits over conventional processor platforms for SB-NIDS. The strengths and weaknesses of the hardware accelerators and algorithms are analysed, and experimental results are examined to determine the effectiveness of the implementation. Experimental results confirm that the PMHA is capable of performing network packet analysis for gigabit rate network traffic. Experimental test results indicate that our SB-NIDS prototype implementation on relatively low clock rate embedded processing platform performance is approximately 1.7 times better than Snort executing on a general purpose processor on PC when comparing processor cycles rather than wall clock time

    A Survey on Deep Learning in Medical Image Analysis

    Full text link
    Deep learning algorithms, in particular convolutional networks, have rapidly become a methodology of choice for analyzing medical images. This paper reviews the major deep learning concepts pertinent to medical image analysis and summarizes over 300 contributions to the field, most of which appeared in the last year. We survey the use of deep learning for image classification, object detection, segmentation, registration, and other tasks and provide concise overviews of studies per application area. Open challenges and directions for future research are discussed.Comment: Revised survey includes expanded discussion section and reworked introductory section on common deep architectures. Added missed papers from before Feb 1st 201

    Engineering Aggregation Operators for Relational In-Memory Database Systems

    Get PDF
    In this thesis we study the design and implementation of Aggregation operators in the context of relational in-memory database systems. In particular, we identify and address the following challenges: cache-efficiency, CPU-friendliness, parallelism within and across processors, robust handling of skewed data, adaptive processing, processing with constrained memory, and integration with modern database architectures. Our resulting algorithm outperforms the state-of-the-art by up to 3.7x
    corecore