4,468 research outputs found

    FORM version 4.0

    Full text link
    We present version 4.0 of the symbolic manipulation system FORM. The most important new features are manipulation of rational polynomials and the factorization of expressions. Many other new functions and commands are also added; some of them are very general, while others are designed for building specific high level packages, such as one for Groebner bases. New is also the checkpoint facility, that allows for periodic backups during long calculations. Lastly, FORM 4.0 has become available as open source under the GNU General Public License version 3.Comment: 26 pages. Uses axodra

    Distributed Triangle Counting in the Graphulo Matrix Math Library

    Full text link
    Triangle counting is a key algorithm for large graph analysis. The Graphulo library provides a framework for implementing graph algorithms on the Apache Accumulo distributed database. In this work we adapt two algorithms for counting triangles, one that uses the adjacency matrix and another that also uses the incidence matrix, to the Graphulo library for server-side processing inside Accumulo. Cloud-based experiments show a similar performance profile for these different approaches on the family of power law Graph500 graphs, for which data skew increasingly bottlenecks. These results motivate the design of skew-aware hybrid algorithms that we propose for future work.Comment: Honorable mention in the 2017 IEEE HPEC's Graph Challeng

    Speculative Approximations for Terascale Analytics

    Full text link
    Model calibration is a major challenge faced by the plethora of statistical analytics packages that are increasingly used in Big Data applications. Identifying the optimal model parameters is a time-consuming process that has to be executed from scratch for every dataset/model combination even by experienced data scientists. We argue that the incapacity to evaluate multiple parameter configurations simultaneously and the lack of support to quickly identify sub-optimal configurations are the principal causes. In this paper, we develop two database-inspired techniques for efficient model calibration. Speculative parameter testing applies advanced parallel multi-query processing methods to evaluate several configurations concurrently. The number of configurations is determined adaptively at runtime, while the configurations themselves are extracted from a distribution that is continuously learned following a Bayesian process. Online aggregation is applied to identify sub-optimal configurations early in the processing by incrementally sampling the training dataset and estimating the objective function corresponding to each configuration. We design concurrent online aggregation estimators and define halting conditions to accurately and timely stop the execution. We apply the proposed techniques to distributed gradient descent optimization -- batch and incremental -- for support vector machines and logistic regression models. We implement the resulting solutions in GLADE PF-OLA -- a state-of-the-art Big Data analytics system -- and evaluate their performance over terascale-size synthetic and real datasets. The results confirm that as many as 32 configurations can be evaluated concurrently almost as fast as one, while sub-optimal configurations are detected accurately in as little as a 1/20th1/20^{\text{th}} fraction of the time

    Sparse Allreduce: Efficient Scalable Communication for Power-Law Data

    Full text link
    Many large datasets exhibit power-law statistics: The web graph, social networks, text data, click through data etc. Their adjacency graphs are termed natural graphs, and are known to be difficult to partition. As a consequence most distributed algorithms on these graphs are communication intensive. Many algorithms on natural graphs involve an Allreduce: a sum or average of partitioned data which is then shared back to the cluster nodes. Examples include PageRank, spectral partitioning, and many machine learning algorithms including regression, factor (topic) models, and clustering. In this paper we describe an efficient and scalable Allreduce primitive for power-law data. We point out scaling problems with existing butterfly and round-robin networks for Sparse Allreduce, and show that a hybrid approach improves on both. Furthermore, we show that Sparse Allreduce stages should be nested instead of cascaded (as in the dense case). And that the optimum throughput Allreduce network should be a butterfly of heterogeneous degree where degree decreases with depth into the network. Finally, a simple replication scheme is introduced to deal with node failures. We present experiments showing significant improvements over existing systems such as PowerGraph and Hadoop
    • …
    corecore