3,804 research outputs found

    Intelligent intrusion detection in low power IoTs

    Get PDF

    Dynamic Information Flow Tracking on Multicores

    Get PDF
    Dynamic Information Flow Tracking (DIFT) is a promising technique for detecting software attacks. Due to the computationally intensive nature of the technique, prior efficient implementations [21, 6] rely on specialized hardware support whose only purpose is to enable DIFT. Alternatively, prior software implementations are either too slow [17, 15] resulting in execution time increases as much as four fold for SPEC integer programs or they are not transparent [31] requiring source code modifications. In this paper, we propose the use of chip multiprocessors (CMP) to perform DIFT transparently and efficiently. We spawn a helper thread that is scheduled on a separate core and is only responsible for performing information flow tracking operations. This entails the communication of registers and flags between the main and helper threads. We explore software (shared memory) and hardware (dedicated interconnect) approaches to enable this communication. Finally, we propose a novel application of the DIFT infrastructure where, in addition to the detection of the software attack, DIFT assists in the process of identifying the cause of the bug in the code that enabled the exploit in the first place. We conducted detailed simulations to evaluate the overhead for performing DIFT and found that to be 48 % for SPEC integer programs

    A Survey of Techniques for Improving Security of GPUs

    Full text link
    Graphics processing unit (GPU), although a powerful performance-booster, also has many security vulnerabilities. Due to these, the GPU can act as a safe-haven for stealthy malware and the weakest `link' in the security `chain'. In this paper, we present a survey of techniques for analyzing and improving GPU security. We classify the works on key attributes to highlight their similarities and differences. More than informing users and researchers about GPU security techniques, this survey aims to increase their awareness about GPU security vulnerabilities and potential countermeasures

    HardScope: Thwarting DOP with Hardware-assisted Run-time Scope Enforcement

    Full text link
    Widespread use of memory unsafe programming languages (e.g., C and C++) leaves many systems vulnerable to memory corruption attacks. A variety of defenses have been proposed to mitigate attacks that exploit memory errors to hijack the control flow of the code at run-time, e.g., (fine-grained) randomization or Control Flow Integrity. However, recent work on data-oriented programming (DOP) demonstrated highly expressive (Turing-complete) attacks, even in the presence of these state-of-the-art defenses. Although multiple real-world DOP attacks have been demonstrated, no efficient defenses are yet available. We propose run-time scope enforcement (RSE), a novel approach designed to efficiently mitigate all currently known DOP attacks by enforcing compile-time memory safety constraints (e.g., variable visibility rules) at run-time. We present HardScope, a proof-of-concept implementation of hardware-assisted RSE for the new RISC-V open instruction set architecture. We discuss our systematic empirical evaluation of HardScope which demonstrates that it can mitigate all currently known DOP attacks, and has a real-world performance overhead of 3.2% in embedded benchmarks
    corecore