16 research outputs found

    Enhancing Exploration and Safety in Deep Reinforcement Learning

    Get PDF
    A Deep Reinforcement Learning (DRL) agent tries to learn a policy maximizing a long-term objective by trials and errors in large state spaces. However, this learning paradigm requires a non-trivial amount of interactions in the environment to achieve good performance. Moreover, critical applications, such as robotics, typically involve safety criteria to consider while designing novel DRL solutions. Hence, devising safe learning approaches with efficient exploration is crucial to avoid getting stuck in local optima, failing to learn properly, or causing damages to the surrounding environment. This thesis focuses on developing Deep Reinforcement Learning algorithms to foster efficient exploration and safer behaviors in simulation and real domains of interest, ranging from robotics to multi-agent systems. To this end, we rely both on standard benchmarks, such as SafetyGym, and robotic tasks widely adopted in the literature (e.g., manipulation, navigation). This variety of problems is crucial to assess the statistical significance of our empirical studies and the generalization skills of our approaches. We initially benchmark the sample efficiency versus performance trade-off between value-based and policy-gradient algorithms. This part highlights the benefits of using non-standard simulation environments (i.e., Unity), which also facilitates the development of further optimization for DRL. We also discuss the limitations of standard evaluation metrics (e.g., return) in characterizing the actual behaviors of a policy, proposing the use of Formal Verification (FV) as a practical methodology to evaluate behaviors over desired specifications. The second part introduces Evolutionary Algorithms (EAs) as a gradient-free complimentary optimization strategy. In detail, we combine population-based and gradient-based DRL to diversify exploration and improve performance both in single and multi-agent applications. For the latter, we discuss how prior Multi-Agent (Deep) Reinforcement Learning (MARL) approaches hinder exploration, proposing an architecture that favors cooperation without affecting exploration

    A Comprehensive Review on Autonomous Navigation

    Full text link
    The field of autonomous mobile robots has undergone dramatic advancements over the past decades. Despite achieving important milestones, several challenges are yet to be addressed. Aggregating the achievements of the robotic community as survey papers is vital to keep the track of current state-of-the-art and the challenges that must be tackled in the future. This paper tries to provide a comprehensive review of autonomous mobile robots covering topics such as sensor types, mobile robot platforms, simulation tools, path planning and following, sensor fusion methods, obstacle avoidance, and SLAM. The urge to present a survey paper is twofold. First, autonomous navigation field evolves fast so writing survey papers regularly is crucial to keep the research community well-aware of the current status of this field. Second, deep learning methods have revolutionized many fields including autonomous navigation. Therefore, it is necessary to give an appropriate treatment of the role of deep learning in autonomous navigation as well which is covered in this paper. Future works and research gaps will also be discussed

    Phone2Proc: Bringing Robust Robots Into Our Chaotic World

    Full text link
    Training embodied agents in simulation has become mainstream for the embodied AI community. However, these agents often struggle when deployed in the physical world due to their inability to generalize to real-world environments. In this paper, we present Phone2Proc, a method that uses a 10-minute phone scan and conditional procedural generation to create a distribution of training scenes that are semantically similar to the target environment. The generated scenes are conditioned on the wall layout and arrangement of large objects from the scan, while also sampling lighting, clutter, surface textures, and instances of smaller objects with randomized placement and materials. Leveraging just a simple RGB camera, training with Phone2Proc shows massive improvements from 34.7% to 70.7% success rate in sim-to-real ObjectNav performance across a test suite of over 200 trials in diverse real-world environments, including homes, offices, and RoboTHOR. Furthermore, Phone2Proc's diverse distribution of generated scenes makes agents remarkably robust to changes in the real world, such as human movement, object rearrangement, lighting changes, or clutter.Comment: https://allenai.org/project/phone2pro

    Antipodal Robotic Grasping using Deep Learning

    Get PDF
    In this work, we discuss two implementations that predict antipodal grasps for novel objects: A deep Q-learning approach and a Generative Residual Convolutional Neural Network approach. We present a deep reinforcement learning based method to solve the problem of robotic grasping using visio-motor feedback. The use of a deep learning based approach reduces the complexity caused by the use of hand-designed features. Our method uses an off-policy reinforcement learning framework to learn the grasping policy. We use the double deep Q-learning framework along with a novel Grasp-Q-Network to output grasp probabilities used to learn grasps that maximize the pick success. We propose a visual servoing mechanism that uses a multi-view camera setup that observes the scene which contains the objects of interest. We performed experiments using a Baxter Gazebo simulated environment as well as on the actual robot. The results show that our proposed method outperforms the baseline Q-learning framework and increases grasping accuracy by adapting a multi-view model in comparison to a single-view model. The second method tackles the problem of generating antipodal robotic grasps for unknown objects from an n-channel image of the scene. We propose a novel Generative Residual Convolutional Neural Network (GR-ConvNet) model that can generate robust antipodal grasps from n-channel input at real-time speeds (20ms). We evaluate the proposed model architecture on standard dataset and previously unseen household objects. We achieved state-of-the-art accuracy of 97.7% on Cornell grasp dataset. We also demonstrate a 93.5% grasp success rate on previously unseen real-world objects

    Mobile Robots Navigation

    Get PDF
    Mobile robots navigation includes different interrelated activities: (i) perception, as obtaining and interpreting sensory information; (ii) exploration, as the strategy that guides the robot to select the next direction to go; (iii) mapping, involving the construction of a spatial representation by using the sensory information perceived; (iv) localization, as the strategy to estimate the robot position within the spatial map; (v) path planning, as the strategy to find a path towards a goal location being optimal or not; and (vi) path execution, where motor actions are determined and adapted to environmental changes. The book addresses those activities by integrating results from the research work of several authors all over the world. Research cases are documented in 32 chapters organized within 7 categories next described
    corecore