12,779 research outputs found

    Memory-Augmented Neural Networks for Machine Translation

    Full text link
    Memory-augmented neural networks (MANNs) have been shown to outperform other recurrent neural network architectures on a series of artificial sequence learning tasks, yet they have had limited application to real-world tasks. We evaluate direct application of Neural Turing Machines (NTM) and Differentiable Neural Computers (DNC) to machine translation. We further propose and evaluate two models which extend the attentional encoder-decoder with capabilities inspired by memory augmented neural networks. We evaluate our proposed models on IWSLT Vietnamese to English and ACL Romanian to English datasets. Our proposed models and the memory augmented neural networks perform similarly to the attentional encoder-decoder on the Vietnamese to English translation task while have a 0.3-1.9 lower BLEU score for the Romanian to English task. Interestingly, our analysis shows that despite being equipped with additional flexibility and being randomly initialized memory augmented neural networks learn an algorithm for machine translation almost identical to the attentional encoder-decoder

    Learning to Remember Rare Events

    Full text link
    Despite recent advances, memory-augmented deep neural networks are still limited when it comes to life-long and one-shot learning, especially in remembering rare events. We present a large-scale life-long memory module for use in deep learning. The module exploits fast nearest-neighbor algorithms for efficiency and thus scales to large memory sizes. Except for the nearest-neighbor query, the module is fully differentiable and trained end-to-end with no extra supervision. It operates in a life-long manner, i.e., without the need to reset it during training. Our memory module can be easily added to any part of a supervised neural network. To show its versatility we add it to a number of networks, from simple convolutional ones tested on image classification to deep sequence-to-sequence and recurrent-convolutional models. In all cases, the enhanced network gains the ability to remember and do life-long one-shot learning. Our module remembers training examples shown many thousands of steps in the past and it can successfully generalize from them. We set new state-of-the-art for one-shot learning on the Omniglot dataset and demonstrate, for the first time, life-long one-shot learning in recurrent neural networks on a large-scale machine translation task.Comment: Conference paper accepted for ICLR'1

    Learning to Remember Translation History with a Continuous Cache

    Full text link
    Existing neural machine translation (NMT) models generally translate sentences in isolation, missing the opportunity to take advantage of document-level information. In this work, we propose to augment NMT models with a very light-weight cache-like memory network, which stores recent hidden representations as translation history. The probability distribution over generated words is updated online depending on the translation history retrieved from the memory, endowing NMT models with the capability to dynamically adapt over time. Experiments on multiple domains with different topics and styles show the effectiveness of the proposed approach with negligible impact on the computational cost.Comment: Accepted by TACL 201

    Attention Augmented Convolutional Networks

    Full text link
    Convolutional networks have been the paradigm of choice in many computer vision applications. The convolution operation however has a significant weakness in that it only operates on a local neighborhood, thus missing global information. Self-attention, on the other hand, has emerged as a recent advance to capture long range interactions, but has mostly been applied to sequence modeling and generative modeling tasks. In this paper, we consider the use of self-attention for discriminative visual tasks as an alternative to convolutions. We introduce a novel two-dimensional relative self-attention mechanism that proves competitive in replacing convolutions as a stand-alone computational primitive for image classification. We find in control experiments that the best results are obtained when combining both convolutions and self-attention. We therefore propose to augment convolutional operators with this self-attention mechanism by concatenating convolutional feature maps with a set of feature maps produced via self-attention. Extensive experiments show that Attention Augmentation leads to consistent improvements in image classification on ImageNet and object detection on COCO across many different models and scales, including ResNets and a state-of-the art mobile constrained network, while keeping the number of parameters similar. In particular, our method achieves a 1.3%1.3\% top-1 accuracy improvement on ImageNet classification over a ResNet50 baseline and outperforms other attention mechanisms for images such as Squeeze-and-Excitation. It also achieves an improvement of 1.4 mAP in COCO Object Detection on top of a RetinaNet baseline.Comment: ICCV 201

    Integrating Transformer and Paraphrase Rules for Sentence Simplification

    Full text link
    Sentence simplification aims to reduce the complexity of a sentence while retaining its original meaning. Current models for sentence simplification adopted ideas from ma- chine translation studies and implicitly learned simplification mapping rules from normal- simple sentence pairs. In this paper, we explore a novel model based on a multi-layer and multi-head attention architecture and we pro- pose two innovative approaches to integrate the Simple PPDB (A Paraphrase Database for Simplification), an external paraphrase knowledge base for simplification that covers a wide range of real-world simplification rules. The experiments show that the integration provides two major benefits: (1) the integrated model outperforms multiple state- of-the-art baseline models for sentence simplification in the literature (2) through analysis of the rule utilization, the model seeks to select more accurate simplification rules. The code and models used in the paper are available at https://github.com/ Sanqiang/text_simplification

    Implementing Neural Turing Machines

    Full text link
    Neural Turing Machines (NTMs) are an instance of Memory Augmented Neural Networks, a new class of recurrent neural networks which decouple computation from memory by introducing an external memory unit. NTMs have demonstrated superior performance over Long Short-Term Memory Cells in several sequence learning tasks. A number of open source implementations of NTMs exist but are unstable during training and/or fail to replicate the reported performance of NTMs. This paper presents the details of our successful implementation of a NTM. Our implementation learns to solve three sequential learning tasks from the original NTM paper. We find that the choice of memory contents initialization scheme is crucial in successfully implementing a NTM. Networks with memory contents initialized to small constant values converge on average 2 times faster than the next best memory contents initialization scheme

    Flexible and Creative Chinese Poetry Generation Using Neural Memory

    Full text link
    It has been shown that Chinese poems can be successfully generated by sequence-to-sequence neural models, particularly with the attention mechanism. A potential problem of this approach, however, is that neural models can only learn abstract rules, while poem generation is a highly creative process that involves not only rules but also innovations for which pure statistical models are not appropriate in principle. This work proposes a memory-augmented neural model for Chinese poem generation, where the neural model and the augmented memory work together to balance the requirements of linguistic accordance and aesthetic innovation, leading to innovative generations that are still rule-compliant. In addition, it is found that the memory mechanism provides interesting flexibility that can be used to generate poems with different styles

    Exploring the Use of Attention within an Neural Machine Translation Decoder States to Translate Idioms

    Full text link
    Idioms pose problems to almost all Machine Translation systems. This type of language is very frequent in day-to-day language use and cannot be simply ignored. The recent interest in memory augmented models in the field of Language Modelling has aided the systems to achieve good results by bridging long-distance dependencies. In this paper we explore the use of such techniques into a Neural Machine Translation system to help in translation of idiomatic language

    Linguistic Knowledge as Memory for Recurrent Neural Networks

    Full text link
    Training recurrent neural networks to model long term dependencies is difficult. Hence, we propose to use external linguistic knowledge as an explicit signal to inform the model which memories it should utilize. Specifically, external knowledge is used to augment a sequence with typed edges between arbitrarily distant elements, and the resulting graph is decomposed into directed acyclic subgraphs. We introduce a model that encodes such graphs as explicit memory in recurrent neural networks, and use it to model coreference relations in text. We apply our model to several text comprehension tasks and achieve new state-of-the-art results on all considered benchmarks, including CNN, bAbi, and LAMBADA. On the bAbi QA tasks, our model solves 15 out of the 20 tasks with only 1000 training examples per task. Analysis of the learned representations further demonstrates the ability of our model to encode fine-grained entity information across a document

    Advances in Natural Language Question Answering: A Review

    Full text link
    Question Answering has recently received high attention from artificial intelligence communities due to the advancements in learning technologies. Early question answering models used rule-based approaches and moved to the statistical approach to address the vastly available information. However, statistical approaches are shown to underperform in handling the dynamic nature and the variation of language. Therefore, learning models have shown the capability of handling the dynamic nature and variations in language. Many deep learning methods have been introduced to question answering. Most of the deep learning approaches have shown to achieve higher results compared to machine learning and statistical methods. The dynamic nature of language has profited from the nonlinear learning in deep learning. This has created prominent success and a spike in work on question answering. This paper discusses the successes and challenges in question answering question answering systems and techniques that are used in these challenges.Comment: arXiv admin note: text overlap with arXiv:1609.04667 by other author
    corecore