8,233 research outputs found

    Lessons learned from the design of a mobile multimedia system in the Moby Dick project

    Get PDF
    Recent advances in wireless networking technology and the exponential development of semiconductor technology have engendered a new paradigm of computing, called personal mobile computing or ubiquitous computing. This offers a vision of the future with a much richer and more exciting set of architecture research challenges than extrapolations of the current desktop architectures. In particular, these devices will have limited battery resources, will handle diverse data types, and will operate in environments that are insecure, dynamic and which vary significantly in time and location. The research performed in the MOBY DICK project is about designing such a mobile multimedia system. This paper discusses the approach made in the MOBY DICK project to solve some of these problems, discusses its contributions, and accesses what was learned from the project

    The system architecture of the Pocket Companion

    Get PDF
    In the Moby Dick project we design the architecture of a so-called Pocket Companion. It is a small personal portable computer with wireless communication facilities for every day use. The typical use of the Pocket Companion induces a number of requirements concerning security, performance, energy consumption, communication and size. We have shown that these requirements are interrelated and can only be met optimal with one single architecture. The Pocket Companion architecture consists of a central switch with a security module surrounded by several modules. The Pocket Companion is a personal machine. Communication, and particularly wireless communication, is essential for the system to support electronic transactions. Such a system requires a good security infrastructure not only for safeguarding personal data, but also to allow safe (financial) transactions. The integration of a security module in the Pocket Companion architecture provides the basis for a secure environment.\ud Because battery life is limited and battery weight is an important factor for the size and the weight of the Pocket Companion, energy consumption plays a crucial role in the architecture. An important theme of the architecture is: enough performance for minimal energy consumption

    A cooperative cellular and broadcast conditional access system for Pay-TV systems

    Get PDF
    This is the author's accepted manuscript. The final published article is available from the link below. Copyright @ 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.The lack of interoperability between Pay-TV service providers and a horizontally integrated business transaction model have compromised the competition in the Pay-TV market. In addition, the lack of interactivity with customers has resulted in high churn rate and improper security measures have contributed into considerable business loss. These issues are the main cause of high operational costs and subscription fees in the Pay-TV systems. As a result, this paper presents the Mobile Conditional Access System (MICAS) as an end-to-end access control solution for Pay-TV systems. It incorporates the mobile and broadcasting systems and provides a platform whereby service providers can effectively interact with their customers, personalize their services and adopt appropriate security measurements. This would result in the decrease of operating expenses and increase of customers' satisfaction in the system. The paper provides an overview of state-of-the-art conditional access solutions followed by detailed description of design, reference model implementation and analysis of possible MICAS security architectures.Strategy & Technology (S&T) Lt

    NGN PLATFORMS FOR EMERGENCY

    Get PDF

    Integrating identity-based cryptography in IMS service authentication

    Full text link
    Nowadays, the IP Multimedia Subsystem (IMS) is a promising research field. Many ongoing works related to the security and the performances of its employment are presented to the research community. Although, the security and data privacy aspects are very important in the IMS global objectives, they observe little attention so far. Secure access to multimedia services is based on SIP and HTTP digest on top of IMS architecture. The standard deploys AKA-MD5 for the terminal authentication. The third Generation Partnership Project (3GPP) provided Generic Bootstrapping Architecture (GBA) to authenticate the subscriber before accessing multimedia services over HTTP. In this paper, we propose a new IMS Service Authentication scheme using Identity Based cryptography (IBC). This new scheme will lead to better performances when there are simultaneous authentication requests using Identity-based Batch Verification. We analyzed the security of our new protocol and we presented a performance evaluation of its cryptographic operationsComment: 13Page
    • …
    corecore