98,371 research outputs found

    The Limits of Popularity-Based Recommendations, and the Role of Social Ties

    Get PDF
    In this paper we introduce a mathematical model that captures some of the salient features of recommender systems that are based on popularity and that try to exploit social ties among the users. We show that, under very general conditions, the market always converges to a steady state, for which we are able to give an explicit form. Thanks to this we can tell rather precisely how much a market is altered by a recommendation system, and determine the power of users to influence others. Our theoretical results are complemented by experiments with real world social networks showing that social graphs prevent large market distortions in spite of the presence of highly influential users.Comment: 10 pages, 9 figures, KDD 201

    Neural Graph Collaborative Filtering

    Full text link
    Learning vector representations (aka. embeddings) of users and items lies at the core of modern recommender systems. Ranging from early matrix factorization to recently emerged deep learning based methods, existing efforts typically obtain a user's (or an item's) embedding by mapping from pre-existing features that describe the user (or the item), such as ID and attributes. We argue that an inherent drawback of such methods is that, the collaborative signal, which is latent in user-item interactions, is not encoded in the embedding process. As such, the resultant embeddings may not be sufficient to capture the collaborative filtering effect. In this work, we propose to integrate the user-item interactions -- more specifically the bipartite graph structure -- into the embedding process. We develop a new recommendation framework Neural Graph Collaborative Filtering (NGCF), which exploits the user-item graph structure by propagating embeddings on it. This leads to the expressive modeling of high-order connectivity in user-item graph, effectively injecting the collaborative signal into the embedding process in an explicit manner. We conduct extensive experiments on three public benchmarks, demonstrating significant improvements over several state-of-the-art models like HOP-Rec and Collaborative Memory Network. Further analysis verifies the importance of embedding propagation for learning better user and item representations, justifying the rationality and effectiveness of NGCF. Codes are available at https://github.com/xiangwang1223/neural_graph_collaborative_filtering.Comment: SIGIR 2019; the latest version of NGCF paper, which is distinct from the version published in ACM Digital Librar

    Intelligent Product Brokering for E-Commerce: An Incremental Approach to Unaccounted Attribute Detection

    Get PDF
    This research concentrates on designing generic product-brokering agent to understand user preference towards a product category and recommends a list of products to the user according to the preference captured by the agent. The proposed solution is able to detect both quantifiable and non-quantifiable attributes through a user feedback system. Unlike previous approaches, this research allows the detection of unaccounted attributes that are not within the ontology of the system. No tedious change of the algorithm, database, or ontology is required when a new product attribute is introduced. This approach only requires the attribute to be within the description field of the product. The system analyzes the general product descriptions field and creates a list of candidate attributes affecting the user’s preference. A genetic algorithm verifies these candidate attributes and excess attributes are identified and filtered off. A prototype has been created and our results show positive results in the detection of unaccounted attributes affecting a user
    corecore