153,079 research outputs found

    MARACAS: a real-time multicore VCPU scheduling framework

    Full text link
    This paper describes a multicore scheduling and load-balancing framework called MARACAS, to address shared cache and memory bus contention. It builds upon prior work centered around the concept of virtual CPU (VCPU) scheduling. Threads are associated with VCPUs that have periodically replenished time budgets. VCPUs are guaranteed to receive their periodic budgets even if they are migrated between cores. A load balancing algorithm ensures VCPUs are mapped to cores to fairly distribute surplus CPU cycles, after ensuring VCPU timing guarantees. MARACAS uses surplus cycles to throttle the execution of threads running on specific cores when memory contention exceeds a certain threshold. This enables threads on other cores to make better progress without interference from co-runners. Our scheduling framework features a novel memory-aware scheduling approach that uses performance counters to derive an average memory request latency. We show that latency-based memory throttling is more effective than rate-based memory access control in reducing bus contention. MARACAS also supports cache-aware scheduling and migration using page recoloring to improve performance isolation amongst VCPUs. Experiments show how MARACAS reduces multicore resource contention, leading to improved task progress.http://www.cs.bu.edu/fac/richwest/papers/rtss_2016.pdfAccepted manuscrip

    Reducing main memory access latency through SDRAM address mapping techniques and access reordering mechanisms

    Get PDF
    As the performance gap between microprocessors and memory continues to increase, main memory accesses result in long latencies which become a factor limiting system performance. Previous studies show that main memory access streams contain significant localities and SDRAM devices provide parallelism through multiple banks and channels. These locality and parallelism have not been exploited thoroughly by conventional memory controllers. In this thesis, SDRAM address mapping techniques and memory access reordering mechanisms are studied and applied to memory controller design with the goal of reducing observed main memory access latency. The proposed bit-reversal address mapping attempts to distribute main memory accesses evenly in the SDRAM address space to enable bank parallelism. As memory accesses to unique banks are interleaved, the access latencies are partially hidden and therefore reduced. With the consideration of cache conflict misses, bit-reversal address mapping is able to direct potential row conflicts to different banks, further improving the performance. The proposed burst scheduling is a novel access reordering mechanism, which creates bursts by clustering accesses directed to the same rows of the same banks. Subjected to a threshold, reads are allowed to preempt writes and qualified writes are piggybacked at the end of the bursts. A sophisticated access scheduler selects accesses based on priorities and interleaves accesses to maximize the SDRAM data bus utilization. Consequentially burst scheduling reduces row conflict rate, increasing and exploiting the available row locality. Using a revised SimpleScalar and M5 simulator, both techniques are evaluated and compared with existing academic and industrial solutions. With SPEC CPU2000 benchmarks, bit-reversal reduces the execution time by 14% on average over traditional page interleaving address mapping. Burst scheduling also achieves a 15% reduction in execution time over conventional bank in order scheduling. Working constructively together, bit-reversal and burst scheduling successfully achieve a 19% speedup across simulated benchmarks

    Doctor of Philosophy

    Get PDF
    dissertationThe internet-based information infrastructure that has powered the growth of modern personal/mobile computing is composed of powerful, warehouse-scale computers or datacenters. These heavily subscribed datacenters perform data-processing jobs under intense quality of service guarantees. Further, high-performance compute platforms are being used to model and analyze increasingly complex scientific problems and natural phenomena. To ensure that the high-performance needs of these machines are met, it is necessary to increase the efficiency of the memory system that supplies data to the processing cores. Many of the microarchitectural innovations that were designed to scale the memory wall (e.g., out-of-order instruction execution, on-chip caches) are being rendered less effective due to several emerging trends (e.g., increased emphasis on energy consumption, limited access locality). This motivates the optimization of the main memory system itself. The key to an efficient main memory system is the memory controller. In particular, the scheduling algorithm in the memory controller greatly influences its performance. This dissertation explores this hypothesis in several contexts. It develops tools to better understand memory scheduling and develops scheduling innovations for CPUs and GPUs. We propose novel memory scheduling techniques that are strongly aware of the access patterns of the clients as well as the microarchitecture of the memory device. Based on these, we present (i) a Dynamic Random Access Memory (DRAM) chip microarchitecture optimized for reducing write-induced slowdown, (ii) a memory scheduling algorithm that exploits these features, (iii) several memory scheduling algorithms to reduce the memory-related stall experienced by irregular General Purpose Graphics Processing Unit (GPGPU) applications, and (iv) the Utah Simulated Memory Module (USIMM), a detailed, validated simulator for DRAM main memory that we use for analyzing and proposing scheduler algorithms

    Dynamic Loop Scheduling Using MPI Passive-Target Remote Memory Access

    Get PDF
    Scientific applications often contain large computationally-intensive parallel loops. Loop scheduling techniques aim to achieve load balanced executions of such applications. For distributed-memory systems, existing dynamic loop scheduling (DLS) libraries are typically MPI-based, and employ a master-worker execution model to assign variably-sized chunks of loop iterations. The master-worker execution model may adversely impact performance due to the master-level contention. This work proposes a distributed chunk-calculation approach that does not require the master-worker execution scheme. Moreover, it considers the novel features in the latest MPI standards, such as passive-target remote memory access, shared-memory window creation, and atomic read-modify-write operations. To evaluate the proposed approach, five well-known DLS techniques, two applications, and two heterogeneous hardware setups have been considered. The DLS techniques implemented using the proposed approach outperformed their counterparts implemented using the traditional master-worker execution model

    Contention-Aware Dynamic Memory Bandwidth Isolation with Predictability in COTS Multicores: An Avionics Case Study

    Get PDF
    Airbus is investigating COTS multicore platforms for safety-critical avionics applications, pursuing helicopter-style autonomous and electric aircraft. These aircraft need to be ultra-lightweight for future mobility in the urban city landscape. As a step towards certification, Airbus identified the need for new methods that preserve the ARINC 653 single core schedule of a Helicopter Terrain Awareness and Warning System (HTAWS) application while scheduling additional safety-critical partitions on the other cores. As some partitions in the HTAWS application are memory-intensive, static memory bandwidth throttling may lead to slow down of such partitions or provide only little remaining bandwidth to the other cores. Thus, there is a need for dynamic memory bandwidth isolation. This poses new challenges for scheduling, as execution times and scheduling become interdependent: scheduling requires execution times as input, which depends on memory latencies and contention from memory accesses of other cores - which are determined by scheduling. Furthermore, execution times depend on memory access patterns. In this paper, we propose a method to solve this problem for slot-based time-triggered systems without requiring application source-code modifications using a number of dynamic memory bandwidth levels. It is NoC and DRAM controller contention-aware and based on the existing interference-sensitive WCET computation and the memory bandwidth throttling mechanism. It constructs schedule tables by assigning partitions and dynamic memory bandwidth to each slot on each core, considering worst case memory access patterns. Then at runtime, two servers - for processing time and memory bandwidth - run on each core, jointly controlling the contention between the cores and the amount of memory accesses per slot. As a proof-of-concept, we use a constraint solver to construct tables. Experiments on the P4080 COTS multicore platform, using a research OS from Airbus and EEMBC benchmarks, demonstrate that our proposed method enables preserving existing schedules on a core while scheduling additional safety-critical partitions on other cores, and meets dynamic memory bandwidth isolation requirements

    Cache-Aware Memory Manager for Optimistic Simulations

    Get PDF
    Parallel Discrete Event Simulation is a well known technique for executing complex general-purpose simulations where models are described as objects the interaction of which is expressed through the generation of impulsive events. In particular, Optimistic Simulation allows full exploitation of the available computational power, avoiding the need to compute safety properties for the events to be executed. Optimistic Simulation platforms internally rely on several data structures, which are meant to support operations aimed at ensuring correctness, inter-kernel communication and/or event scheduling. These housekeeping and management operations access them according to complex patterns, commonly suffering from misuse of memory caching architectures. In particular, operations like log/restore access data structures on a periodic basis, producing the replacement of in-cache buffers related to the actual working set of the application logic, producing a non-negligible performance drop. In this work we propose generally-applicable design principles for a new memory management subsystem targeted at Optimistic Simulation platforms which can face this issue by wisely allocating memory buffers depending on their actual future access patterns, in order to enhance event-execution memory locality. Additionally, an application-transparent implementation within ROOT-Sim, an open-source generalpurpose optimistic simulation platform, is presented along with experimental results testing our proposal

    An efficient sparse conjugate gradient solver using a Beneš permutation network

    Get PDF
    © 2014 Technical University of Munich (TUM).The conjugate gradient (CG) is one of the most widely used iterative methods for solving systems of linear equations. However, parallelizing CG for large sparse systems is difficult due to the inherent irregularity in memory access pattern. We propose a novel processor architecture for the sparse conjugate gradient method. The architecture consists of multiple processing elements and memory banks, and is able to compute efficiently both sparse matrix-vector multiplication, and other dense vector operations. A Beneš permutation network with an optimised control scheme is introduced to reduce memory bank conflicts without expensive logic. We describe a heuristics for offline scheduling, the effect of which is captured in a parametric model for estimating the performance of designs generated from our approach
    • …
    corecore