2,304 research outputs found

    The Impact of Parallel Processing on Operating Systems

    Get PDF
    The base entity in computer programming is the process or task. The parallelism can be achieved by executing multiple processes on different processors. Distributed systems are managed by distributed operating systems that represent the extension for multiprocessor architectures of multitasking and multiprogramming operating systems.

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units

    PowerPack: Energy Profiling and Analysis of High-Performance Systems and Applications

    Get PDF
    Energy efficiency is a major concern in modern high-performance computing system design. In the past few years, there has been mounting evidence that power usage limits system scale and computing density, and thus, ultimately system performance. However, despite the impact of power and energy on the computer systems community, few studies provide insight to where and how power is consumed on high-performance systems and applications. In previous work, we designed a framework called PowerPack that was the first tool to isolate the power consumption of devices including disks, memory, NICs, and processors in a high-performance cluster and correlate these measurements to application functions. In this work, we extend our framework to support systems with multicore, multiprocessor-based nodes, and then provide in-depth analyses of the energy consumption of parallel applications on clusters of these systems. These analyses include the impacts of chip multiprocessing on power and energy efficiency, and its interaction with application executions. In addition, we use PowerPack to study the power dynamics and energy efficiencies of dynamic voltage and frequency scaling (DVFS) techniques on clusters. Our experiments reveal conclusively how intelligent DVFS scheduling can enhance system energy efficiency while maintaining performance

    MAC OS X VERSION 10.5 ā€œLEOPARDā€

    Get PDF
    Mac OS X version 10.5 ā€œLeopardā€ is the sixth major release of Mac OS X. This operating system is the successor of Mac OS X v10.4 "Tiger". Leopard was released on 26 October 2007, and is available in two variantsmacos x

    Hyperswitch communication network

    Get PDF
    The Hyperswitch Communication Network (HCN) is a large scale parallel computer prototype being developed at JPL. Commercial versions of the HCN computer are planned. The HCN computer being designed is a message passing multiple instruction multiple data (MIMD) computer, and offers many advantages in price-performance ratio, reliability and availability, and manufacturing over traditional uniprocessors and bus based multiprocessors. The design of the HCN operating system is a uniquely flexible environment that combines both parallel processing and distributed processing. This programming paradigm can achieve a balance among the following competing factors: performance in processing and communications, user friendliness, and fault tolerance. The prototype is being designed to accommodate a maximum of 64 state of the art microprocessors. The HCN is classified as a distributed supercomputer. The HCN system is described, and the performance/cost analysis and other competing factors within the system design are reviewed

    Implementation of Asymmetric Multiprocessing Support in a Real-Time Operating System

    Get PDF
    The semiconductor industry can no longer afford to rely on decreasing the size of the die, and increasing the frequency of operation to achieve higher performance. An alternative that has been proven to increase performance is multiprocessing. Multiprocessing refers to the concept of running more than one application or task on more than one central processor. Multi-core processors are the main engine of multiprocessing. In asymmetric multiprocessing, each core in a multi-core systems is independent and has its own code that determines its execution. These cores must be able to communicate and synchronize access to resources
    • ā€¦
    corecore