448 research outputs found

    Abstract Certification of Java Programs in Rewriting Logic

    Full text link
    In this thesis we propose an abstraction based certification technique for Java programs which is based on rewriting logic, a very general logical and semantic framework efficiently implemented in the functional programming language Maude. We focus on safety properties, i.e. properties of a system that are defined in terms of certain events not happening, which we characterize as unreachability problems in rewriting logic. The safety policy is expressed in the style of JML, a standard property specification language for Java modules. In order to provide a decision procedure, we enforce finite-state models of programs by using abstract interpretation. Starting from a specification of the Java semantics written in Maude, we develop an abstraction based, finite-state operational semantics also written in Maude which is appropriate for program verification. As a by-product of the verification based on abstraction, a dependable safety certificate is delivered which consists of a set of rewriting proofs that can be easily checked by the code consumer by using a standard rewriting logic engine. The abstraction based proof-carrying code technique, called JavaPCC, has been implemented and successfully tested on several examples, which demonstrate the feasibility of our approach. We analyse local properties of Java methods: i.e. properties of methods regarding their parameters and results. We also study global confidentiality properties of complete Java classes, by initially considering non--interference and, then, erasure with and without non--interference. Non--interference is a semantic program property that assigns confidentiality levels to data objects and prevents illicit information flows from occurring from high to low security levels. In this thesis, we present a novel security model for global non--interference which approximates non--interference as a safety property.Alba Castro, MF. (2011). Abstract Certification of Java Programs in Rewriting Logic [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/13617Palanci

    Industrial Experience Report on the Formal Specification of a Packet Filtering Language Using the K Framework

    Get PDF
    Many project-specific languages, including in particular filtering languages, are defined using nonformal specifications written in natural languages. This leads to ambiguities and errors in the specification of those languages. This paper reports on an industrial experiment on using a tool-supported language specification framework (K) for the formal specification of the syntax and semantics of a filtering language having a complexity similar to those of real-life projects. This experimentation aims at estimating, in a specific industrial setting, the difficulty and benefits of formally specifying a packet filtering language using a tool-supported formal approach

    Program Analysis Scenarios in Rascal

    Get PDF
    Rascal is a meta programming language focused on the implementation of domain-specific languages and on the rapid construction of tools for software analysis and software transformation. In this paper we focus on the use of Rascal for software analysis. We illustrate a range of scenarios for building new software analysis tools through a number of examples, including one showing integration with an existing Maude-based analysis. We then focus on ongoing work on alias analysis and type inference for PHP, showing how Rascal is being used, and sketching a hypothetical solution in Maude. We conclude with a high-level discussion on the commonalities and differences between Rascal and Maude when applied to program analysis

    Logic-based techniques for program analysis and specification synthesis

    Full text link
    La Tesis investiga técnicas ágiles dentro del paradigma declarativo para dar solución a dos problemas: el análisis de programas y la inferencia de especificaciones a partir de programas escritos en lenguajes multiparadigma y en lenguajes imperativos con tipos, objetos, estructuras y punteros. Respecto al estado actual de la tesis, la parte de análisis de programas ya está consolidada, mientras que la parte de inferencia de especificaciones sigue en fase de desarrollo activo. La primera parte da soluciones para la ejecución de análisis de punteros especificados en Datalog. En esta parte se han desarrollado dos técnicas de ejecución de especificaciones en dicho lenguaje Datalog: una de ellas utiliza resolutores de sistemas de ecuaciones booleanas, y la otra utiliza la lógica de reescritura implementada eficientemente en el lenguaje Maude. La segunda parte desarrolla técnicas de inferencia de especificaciones a partir de programas. En esta parte se han desarrollado dos métodos de inferencia de especificaciones. El primer método se desarrolló para el lenguaje lógico-funcional Curry y permite inferir especificaciones ecuacionales mediante interpretación abstracta de los programas. El segundo método está siendo desarrollado para lenguajes imperativos realistas, y se ha aplicado a un subconjunto del lenguaje de programación C. Este método permite inferir especificaciones en forma de reglas que representan las distintas relaciones entre las propiedades que el estado de un programa satisface antes y después de su ejecución. Además, estas propiedades son expresables en términos de las abstracciones funcionales del propio programa, resultando en una especificación de muy alto nivel y, por lo tanto, de más fácil comprensión.Feliú Gabaldón, MA. (2013). Logic-based techniques for program analysis and specification synthesis [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/33747TESI

    Modular specification in rewriting logic (extended version)

    Get PDF
    Our aim is to bring modularity to system specification in rewriting logic. Modularity here is in the sense of decomposing a system into its functional components, coding the specification for each component as a separate system, and then assembling them back. Rewriting logic is well suited for the specification of concurrent and non-deterministic systems but, up to now, modularity could hardly be addressed within it. The base of our proposal is the operation that we call synchronous composition. We discuss the reasons and implications of our proposal, and formalize it for rewriting logic and also for transition structures, to be used as semantics. To show the power of our approach, we include a few small but realistic examples and a larger example on cached computer architecture

    Efficient Monitoring of Parametric Context Free Patterns

    Get PDF
    Recent developments in runtime verification and monitoring show that parametric regular and temporal logic specifications can be efficiently monitored against large programs. However, these logics reduce to ordinary finite automata, limiting their expressivity. For example, neither can specify structured properties that refer to the call stack of the program. While context-free grammars (CFGs) are expressive and well-understood, existing techniques of monitoring CFGs generate massive runtime overhead in real-life applications. This paper shows for the first time that monitoring parametric CFGs is practical (on the order of 10% or lower for average cases, several times faster than the state-of-the-art). We present a monitor synthesis algorithm for CFGs based on an LR(1) parsing algorithm, modified with stack cloning to account for good prefix matching. In addition, a logic-independent mechanism is introduced to support partial matching, allowing patterns to be checked against fragments of execution traces

    A rewriting logic approach to the formal specification and verification of web applications

    Full text link
    [EN] This paper develops a Rewriting Logic framework for the automatic specification and verification of Web applications that considers the critical aspects of concurrent Web interactions, browser navigation features (e.g., forward/back-ward navigation, page refresh, and new window/tab opening), and Web script evaluation. By encompassing the main features of the most popular Web scripting languages (e.g., PHP, ASP, and Java Servlets), our scripting language is powerful enough to model the dynamics of complex Web applications, where the interactions among Web servers and Web browsers are formalized through a landmark communicating protocol that abstracts HTTP. We provide a detailed characterization of browser actions via rewrite rules and show how our models can be naturally model-checked by using the Linear Temporal Logic of Rewriting (LTLR), which is a Linear Temporal Logic that is specifically designed for model-checking rewrite theories. The framework has been completely implemented in Maude, and we report on some successful experiments that we conducted using the Maude LTLR model-checker.This work has been partially supported by the EU (FEDER) and the Spanish MEC project ref. TIN2010-21062-C02-02, and by Generalitat Valenciana ref. PROMETE02011/052. This work was carried out during the tenure by Demis Ballis of an ERCIM "Alain Bensoussan" Postdoctoral Fellowship. The research leading to these results has received funding from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no 246016. Daniel Romero was partially supported by FPI-MEC grant BES-2008-004860.Alpuente Frasnedo, M.; Ballis, D.; Romero, DO. (2014). A rewriting logic approach to the formal specification and verification of web applications. Science of Computer Programming. 81:79-107. https://doi.org/10.1016/j.scico.2013.07.014S791078
    corecore