19 research outputs found

    Software caching techniques and hardware optimizations for on-chip local memories

    Get PDF
    Despite the fact that the most viable L1 memories in processors are caches, on-chip local memories have been a great topic of consideration lately. Local memories are an interesting design option due to their many benefits: less area occupancy, reduced energy consumption and fast and constant access time. These benefits are especially interesting for the design of modern multicore processors since power and latency are important assets in computer architecture today. Also, local memories do not generate coherency traffic which is important for the scalability of the multicore systems. Unfortunately, local memories have not been well accepted in modern processors yet, mainly due to their poor programmability. Systems with on-chip local memories do not have hardware support for transparent data transfers between local and global memories, and thus ease of programming is one of the main impediments for the broad acceptance of those systems. This thesis addresses software and hardware optimizations regarding the programmability, and the usage of the on-chip local memories in the context of both single-core and multicore systems. Software optimizations are related to the software caching techniques. Software cache is a robust approach to provide the user with a transparent view of the memory architecture; but this software approach can suffer from poor performance. In this thesis, we start optimizing traditional software cache by proposing a hierarchical, hybrid software-cache architecture. Afterwards, we develop few optimizations in order to speedup our hybrid software cache as much as possible. As the result of the software optimizations we obtain that our hybrid software cache performs from 4 to 10 times faster than traditional software cache on a set of NAS parallel benchmarks. We do not stop with software caching. We cover some other aspects of the architectures with on-chip local memories, such as the quality of the generated code and its correspondence with the quality of the buffer management in local memories, in order to improve performance of these architectures. Therefore, we run our research till we reach the limit in software and start proposing optimizations on the hardware level. Two hardware proposals are presented in this thesis. One is about relaxing alignment constraints imposed in the architectures with on-chip local memories and the other proposal is about accelerating the management of local memories by providing hardware support for the majority of actions performed in our software cache.Malgrat les memòries cau encara son el component basic pel disseny del subsistema de memòria, les memòries locals han esdevingut una alternativa degut a les seves característiques pel que fa a l’ocupació d’àrea, el seu consum energètic i el seu rendiment amb un temps d’accés ràpid i constant. Aquestes característiques son d’especial interès quan les properes arquitectures multi-nucli estan limitades pel consum de potencia i la latència del subsistema de memòria.Les memòries locals pateixen de limitacions respecte la complexitat en la seva programació, fet que dificulta la seva introducció en arquitectures multi-nucli, tot i els avantatges esmentats anteriorment. Aquesta tesi presenta un seguit de solucions basades en programari i maquinari específicament dissenyat per resoldre aquestes limitacions.Les optimitzacions del programari estan basades amb tècniques d'emmagatzematge de memòria cau suportades per llibreries especifiques. La memòria cau per programari és un sòlid mètode per proporcionar a l'usuari una visió transparent de l'arquitectura, però aquest enfocament pot patir d'un rendiment deficient. En aquesta tesi, es proposa una estructura jeràrquica i híbrida. Posteriorment, desenvolupem optimitzacions per tal d'accelerar l’execució del programari que suporta el disseny de la memòria cau. Com a resultat de les optimitzacions realitzades, obtenim que el nostre disseny híbrid es comporta de 4 a 10 vegades més ràpid que una implementació tradicional de memòria cau sobre un conjunt d’aplicacions de referencia, com son els “NAS parallel benchmarks”.El treball de tesi inclou altres aspectes de les arquitectures amb memòries locals, com ara la qualitat del codi generat i la seva correspondència amb la qualitat de la gestió de memòria intermèdia en les memòries locals, per tal de millorar el rendiment d'aquestes arquitectures. La tesi desenvolupa propostes basades estrictament en el disseny de nou maquinari per tal de millorar el rendiment de les memòries locals quan ja no es possible realitzar mes optimitzacions en el programari. En particular, la tesi presenta dues propostes de maquinari: una relaxa les restriccions imposades per les memòries locals respecte l’alineament de dades, l’altra introdueix maquinari específic per accelerar les operacions mes usuals sobre les memòries locals

    Performance analysis and modeling of GYRO

    Get PDF
    Efficient execution of scientific applications requires an understanding of how system features impact the performance of the application. Performance models provide significant insight into the performance relationships between an application and the system used for execution. In particular, models can be used to predict the relative performance of different systems used to execute an application. Recently, a significant effort has been devoted to gaining a more detailed understanding of the performance characteristics of a fusion reaction application, GYRO. GYRO is a plasma-physics application used to gain a better understanding of the interaction of ions and electrons in fusion reactions. In this thesis, we use the well-known Prophesy system to analyze and model the performance of GYRO across various supercomputer platforms. Using processor partitioning, we determine that utilizing the smallest number of processors per node is the most effective processor configuration for executing the application. Further, we explore trends in kernel coupling values across platforms to understand how kernels of GYRO interact. In this work, experiments are conducted on the supercomputers Seaborg and Jacquard at the DOE National Energy Research Scientific Computing Center and the supercomputers DataStar P655 and P690 at the San Diego Supercomputing Center. Across all four platforms, our results show that utilizing one processor per node (ppn) yields better performance than full or half ppn usage. Our experimental results also show that using kernel coupling to model and predict the performance of GYRO is more accurate than summation. On average, kernel coupling provides for prediction estimates that have less than a 7% error. The performance relationship between kernel coupling values and the sharing of information throughout the GYRO application is explored by understanding the global communication within the application and data locality

    The readying of applications for heterogeneous computing

    Get PDF
    High performance computing is approaching a potentially significant change in architectural design. With pressures on the cost and sheer amount of power, additional architectural features are emerging which require a re-think to the programming models deployed over the last two decades. Today's emerging high performance computing (HPC) systems are maximising performance per unit of power consumed resulting in the constituent parts of the system to be made up of a range of different specialised building blocks, each with their own purpose. This heterogeneity is not just limited to the hardware components but also in the mechanisms that exploit the hardware components. These multiple levels of parallelism, instruction sets and memory hierarchies, result in truly heterogeneous computing in all aspects of the global system. These emerging architectural solutions will require the software to exploit tremendous amounts of on-node parallelism and indeed programming models to address this are emerging. In theory, the application developer can design new software using these models to exploit emerging low power architectures. However, in practice, real industrial scale applications last the lifetimes of many architectural generations and therefore require a migration path to these next generation supercomputing platforms. Identifying that migration path is non-trivial: With applications spanning many decades, consisting of many millions of lines of code and multiple scientific algorithms, any changes to the programming model will be extensive and invasive and may turn out to be the incorrect model for the application in question. This makes exploration of these emerging architectures and programming models using the applications themselves problematic. Additionally, the source code of many industrial applications is not available either due to commercial or security sensitivity constraints. This thesis highlights this problem by assessing current and emerging hard- ware with an industrial strength code, and demonstrating those issues described. In turn it looks at the methodology of using proxy applications in place of real industry applications, to assess their suitability on the next generation of low power HPC offerings. It shows there are significant benefits to be realised in using proxy applications, in that fundamental issues inhibiting exploration of a particular architecture are easier to identify and hence address. Evaluations of the maturity and performance portability are explored for a number of alternative programming methodologies, on a number of architectures and highlighting the broader adoption of these proxy applications, both within the authors own organisation, and across the industry as a whole
    corecore