2,257 research outputs found

    C-MOS array design techniques: SUMC multiprocessor system study

    Get PDF
    The current capabilities of LSI techniques for speed and reliability, plus the possibilities of assembling large configurations of LSI logic and storage elements, have demanded the study of multiprocessors and multiprocessing techniques, problems, and potentialities. Evaluated are three previous systems studies for a space ultrareliable modular computer multiprocessing system, and a new multiprocessing system is proposed that is flexibly configured with up to four central processors, four 1/0 processors, and 16 main memory units, plus auxiliary memory and peripheral devices. This multiprocessor system features a multilevel interrupt, qualified S/360 compatibility for ground-based generation of programs, virtual memory management of a storage hierarchy through 1/0 processors, and multiport access to multiple and shared memory units

    Highly parallel computation

    Get PDF
    Highly parallel computing architectures are the only means to achieve the computation rates demanded by advanced scientific problems. A decade of research has demonstrated the feasibility of such machines and current research focuses on which architectures designated as multiple instruction multiple datastream (MIMD) and single instruction multiple datastream (SIMD) have produced the best results to date; neither shows a decisive advantage for most near-homogeneous scientific problems. For scientific problems with many dissimilar parts, more speculative architectures such as neural networks or data flow may be needed

    A Survey of Research into Mixed Criticality Systems

    Get PDF
    This survey covers research into mixed criticality systems that has been published since Vestal’s seminal paper in 2007, up until the end of 2016. The survey is organised along the lines of the major research areas within this topic. These include single processor analysis (including fixed priority and EDF scheduling, shared resources and static and synchronous scheduling), multiprocessor analysis, realistic models, and systems issues. The survey also explores the relationship between research into mixed criticality systems and other topics such as hard and soft time constraints, fault tolerant scheduling, hierarchical scheduling, cyber physical systems, probabilistic real-time systems, and industrial safety standards

    PPMB: A Partial-Multiple-Bus Multiprocessor Architecture with Improved Cost-Effectiveness

    Get PDF
    This paper addresses the design and performance analysis of partial-multiple-bus interconnection networks. They are bus architectures that have evolved from multiple-bus structure by dividing buses into groups and reducing bus connections. Their effect is to reduce cost and alleviate arbitration and drive requirements without degrading performance significantly. One such structure, called processor-oriented partial-multiple-bus (or PPMB), is proposed. It serves as an alternative to the conventional structure called memory-oriented partial-multiple-bus (or MPMB) and is aimed at higher system performance at less or equal system cost. It has been shown, both analytically and by simulation, that a substantial increase in system bandwidth (up to 20%) is achieved by the PPMB structure over the MPMB structure. With very large systems, the results also imply a significantly improved cost-effectiveness over the conventional multiple-bus architecture
    • …
    corecore