183 research outputs found

    Parallel pivoting combined with parallel reduction

    Get PDF
    Parallel algorithms for triangularization of large, sparse, and unsymmetric matrices are presented. The method combines the parallel reduction with a new parallel pivoting technique, control over generations of fill-ins and a check for numerical stability, all done in parallel with the work being distributed over the active processes. The parallel technique uses the compatibility relation between pivots to identify parallel pivot candidates and uses the Markowitz number of pivots to minimize fill-in. This technique is not a preordering of the sparse matrix and is applied dynamically as the decomposition proceeds

    Hypergraph Partitioning in the Cloud

    Get PDF
    The thesis investigates the partitioning and load balancing problem which has many applications in High Performance Computing (HPC). The application to be partitioned is described with a graph or hypergraph. The latter is of greater interest as hypergraphs, compared to graphs, have a more general structure and can be used to model more complex relationships between groups of objects such as non-symmetric dependencies. Optimal graph and hypergraph partitioning is known to be NP-Hard but good polynomial time heuristic algorithms have been proposed. In this thesis, we propose two multi-level hypergraph partitioning algorithms. The algorithms are based on rough set clustering techniques. The first algorithm, which is a serial algorithm, obtains high quality partitionings and improves the partitioning cut by up to 71\% compared to the state-of-the-art serial hypergraph partitioning algorithms. Furthermore, the capacity of serial algorithms is limited due to the rapid growth of problem sizes of distributed applications. Consequently, we also propose a parallel hypergraph partitioning algorithm. Considering the generality of the hypergraph model, designing a parallel algorithm is difficult and the available parallel hypergraph algorithms offer less scalability compared to their graph counterparts. The issue is twofold: the parallel algorithm and the complexity of the hypergraph structure. Our parallel algorithm provides a trade-off between global and local vertex clustering decisions. By employing novel techniques and approaches, our algorithm achieves better scalability than the state-of-the-art parallel hypergraph partitioner in the Zoltan tool on a set of benchmarks, especially ones with irregular structure. Furthermore, recent advances in cloud computing and the services they provide have led to a trend in moving HPC and large scale distributed applications into the cloud. Despite its advantages, some aspects of the cloud, such as limited network resources, present a challenge to running communication-intensive applications and make them non-scalable in the cloud. While hypergraph partitioning is proposed as a solution for decreasing the communication overhead within parallel distributed applications, it can also offer advantages for running these applications in the cloud. The partitioning is usually done as a pre-processing step before running the parallel application. As parallel hypergraph partitioning itself is a communication-intensive operation, running it in the cloud is hard and suffers from poor scalability. The thesis also investigates the scalability of parallel hypergraph partitioning algorithms in the cloud, the challenges they present, and proposes solutions to improve the cost/performance ratio for running the partitioning problem in the cloud. Our algorithms are implemented as a new hypergraph partitioning package within Zoltan. It is an open source Linux-based toolkit for parallel partitioning, load balancing and data-management designed at Sandia National Labs. The algorithms are known as FEHG and PFEHG algorithms

    Combining rough and fuzzy sets for feature selection

    Get PDF

    On the Strong Scalability of Maritime CFD

    Get PDF
    Since 2004, supercomputer growth hasbeen constrained by energy efficiency rather than raw hardware speeds. Tomaintain exponential growth of overall computing power, a massive growth inparallelization is under way. To keep up with these changes, computationalfluid dynamics (CFD) must improve its strong scalability – its ability tohandle lower cells-per-core ratios and achieve finer-grain parallelization. Amaritime-focused, unstructured, finite-volume code (ReFRESCO) is used toinvestigate the scalability problems for incompressible, viscous CFD using two classicaltest-cases. Existing research suggests that the linear equation-system solveris the main bottleneck to incompressible codes, due to the stiff Poisson pressure equation. Here, these results are expandedby analysing the reasons for this poor scalability. In particular, a number ofalternative linear solvers and preconditioners are tested to determine if thescalability problem can be circumvented, including GMRES, Pipelined-GMRES,Flexible-GMRES and BCGS. Conventional block-wise preconditioners are tested,along with multi-grid preconditioners and smoothers in various configurations.Memory-bandwidth constraints and global communication patterns are found to bethe main bottleneck, and no state-of-the-art solution techniques which solve thestrong-scalability problem satisfactorily could be found. There is significantincentive for more research and development in this area

    A Construction Kit for Efficient Low Power Neural Network Accelerator Designs

    Get PDF
    Implementing embedded neural network processing at the edge requires efficient hardware acceleration that couples high computational performance with low power consumption. Driven by the rapid evolution of network architectures and their algorithmic features, accelerator designs are constantly updated and improved. To evaluate and compare hardware design choices, designers can refer to a myriad of accelerator implementations in the literature. Surveys provide an overview of these works but are often limited to system-level and benchmark-specific performance metrics, making it difficult to quantitatively compare the individual effect of each utilized optimization technique. This complicates the evaluation of optimizations for new accelerator designs, slowing-down the research progress. This work provides a survey of neural network accelerator optimization approaches that have been used in recent works and reports their individual effects on edge processing performance. It presents the list of optimizations and their quantitative effects as a construction kit, allowing to assess the design choices for each building block separately. Reported optimizations range from up to 10'000x memory savings to 33x energy reductions, providing chip designers an overview of design choices for implementing efficient low power neural network accelerators
    • …
    corecore