48 research outputs found

    Survey of Hybrid Image Compression Techniques

    Get PDF
    A compression process is to reduce or compress the size of data while maintaining the quality of information contained therein. This paper presents a survey of research papers discussing improvement of various hybrid compression techniques during the last decade. A hybrid compression technique is a technique combining excellent properties of each group of methods as is performed in JPEG compression method. This technique combines lossy and lossless compression method to obtain a high-quality compression ratio while maintaining the quality of the reconstructed image. Lossy compression technique produces a relatively high compression ratio, whereas lossless compression brings about high-quality data reconstruction as the data can later be decompressed with the same results as before the compression. Discussions of the knowledge of and issues about the ongoing hybrid compression technique development indicate the possibility of conducting further researches to improve the performance of image compression method

    Balancing Compression and Encryption of Satellite Imagery

    Get PDF
    With the rapid developments in the remote sensing technologies and services, there is a necessity for combined compression and encryption of satellite imagery. The onboard satellite compression is used to minimize storage and communication bandwidth requirements of high data rate satellite applications. While encryption is employed to secure these resources and prevent illegal use of image sensitive information. In this paper, we propose an approach to address these challenges which raised in the highly dynamic satellite based networked environment. This approach combined compression algorithms (Huffman and SPIHT) and encryptions algorithms (RC4, blowfish and AES) into three complementary modes: (1) secure lossless compression, (2) secure lossy compression and (3) secure hybrid compression. The extensive experiments on the 126 satellite images dataset showed that our approach outperforms traditional and state of art approaches by saving approximately (53%) of computational resources. In addition, the interesting feature of this approach is these three options that mimic reality by imposing every time a different approach to deal with the problem of limited computing and communication resources

    A State Table SPHIT Approach for Modified Curvelet-based Medical Image Compression

    Get PDF
    Medical imaging plays a significant role in clinical practice. Storing and transferring a large volume of images can be complex and inefficient. This paper presents the development of a new compression technique that combines the fast discrete curvelet transform (FDCvT) with state table set partitioning in the hierarchical trees (STS) encoding scheme. The curvelet transform is an extension of the wavelet transform algorithm that represents data based on scale and position. Initially, the medical image was decomposed using the FDCvT algorithm. The FDCvT algorithm creates symmetrical values for the detail coefficients, and these coefficients are modified to improve the efficiency of the algorithm. The curvelet coefficients are then encoded using the STS and differential pulse-code modulation (DPCM). The greatest amount of energy is contained in the coarse coefficients, which are encoded using the DPCM method. The finest and modified detail coefficients are encoded using the STS method. A variety of medical modalities, including computed tomography (CT), positron emission tomography (PET), and magnetic resonance imaging (MRI), are used to verify the performance of the proposed technique. Various quality metrics, including peak signal-to-noise ratio (PSNR), compression ratio (CR), and structural similarity index (SSIM), are used to evaluate the compression results. Additionally, the computation time for the encoding (ET) and decoding (DT) processes is measured. The experimental results showed that the PET image obtained higher values of the PSNR and CR. The CT image provides high quality for the reconstructed image, with an SSIM value of 0.96 and the fastest ET of 0.13 seconds. The MRI image has the shortest DT, which is 0.23 seconds

    A Comprehensive Review of Distributed Coding Algorithms for Visual Sensor Network (VSN)

    Get PDF
    Since the invention of low cost camera, it has been widely incorporated into the sensor node in Wireless Sensor Network (WSN) to form the Visual Sensor Network (VSN). However, the use of camera is bringing with it a set of new challenges, because all the sensor nodes are powered by batteries. Hence, energy consumption is one of the most critical issues that have to be taken into consideration. In addition to this, the use of batteries has also limited the resources (memory, processor) that can be incorporated into the sensor node. The life time of a VSN decreases quickly as the image is transferred to the destination. One of the solutions to the aforementioned problem is to reduce the data to be transferred in the network by using image compression. In this paper, a comprehensive survey and analysis of distributed coding algorithms that can be used to encode images in VSN is provided. This also includes an overview of these algorithms, together with their advantages and deficiencies when implemented in VSN. These algorithms are then compared at the end to determine the algorithm that is more suitable for VSN

    Compression of MRI brain images based on automatic extraction of tumor region

    Get PDF
    In the compression of medical images, region of interest (ROI) based techniques seem to be promising, as they can result in high compression ratios while maintaining the quality of region of diagnostic importance, the ROI, when image is reconstructed. In this article, we propose a set-up for compression of brain magnetic resonance imaging (MRI) images based on automatic extraction of tumor. Our approach is to first separate the tumor, the ROI in our case, from brain image, using support vector machine (SVM) classification and region extraction step. Then, tumor region (ROI) is compressed using Arithmetic coding, a lossless compression technique. The non-tumorous region, non-region of interest (NROI), is compressed using a lossy compression technique formed by a combination of discrete wavelet transform (DWT), set partitioning in hierarchical trees (SPIHT) and arithmetic coding (AC). The classification performance parameters, like, dice coefficient, sensitivity, positive predictive value and accuracy are tabulated. In the case of compression, we report, performance parameters like mean square error and peak signal to noise ratio for a given set of bits per pixel (bpp) values. We found that the compression scheme considered in our setup gives promising results as compared to other schemes

    Problem-based learning (PBL) awareness among academic staff in Universiti Tun Hussein Onn Malaysia (UTHM)

    Get PDF
    The present study was conducted to determine whether the academic staff in UTHM was aware of Problem-based Learning (PBL) as an instructional approach. It was significant to identify if the academic staff in Universiti Tun Hussein Onn Malaysia (UTHM) had the knowledge about PBL. It was also crucial to know if the academic staff was aware of PBL as a method of teaching their courses in class as this could give the feedback to the university on the use of PBL among academic staff and measures to be taken to help improve their teaching experience. A workshop could also be designed if the academic staff in UTHM was interested to know more about PBL and how it could be used in their classroom. The objective of this study was to identify the awareness of PBL among academic staff in UTHM. This study was conducted via a quantitative method using a questionnaire adapted from the Awareness Questionnaire (AQ). 100 respondents were involved in this study. The findings indicated that the awareness of PBL among UTHM academic staff was moderate. It is a hope that more exposure could be done as PBL is seen as a promising approach in the learning process. In conclusion, the academic staff in UTHM has a moderate level of knowledge about PBL as a teaching methodology

    Data Compression Techniques in Wireless Sensor Networks

    Get PDF
    corecore