290 research outputs found

    ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ํ™˜๊ฒฝ๊ธฐ๋ฐ˜์—์„œ ์ˆ˜์น˜ ๋ชจ๋ธ๋ง๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹์„ ํ†ตํ•œ ์ง€๊ตฌ๊ณผํ•™ ์ž๋ฃŒ์ƒ์„ฑ์— ๊ด€ํ•œ ์—ฐ๊ตฌ

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ์ž์—ฐ๊ณผํ•™๋Œ€ํ•™ ์ง€๊ตฌํ™˜๊ฒฝ๊ณผํ•™๋ถ€, 2022. 8. ์กฐ์–‘๊ธฐ.To investigate changes and phenomena on Earth, many scientists use high-resolution-model results based on numerical models or develop and utilize machine learning-based prediction models with observed data. As information technology advances, there is a need for a practical methodology for generating local and global high-resolution numerical modeling and machine learning-based earth science data. This study recommends data generation and processing using high-resolution numerical models of earth science and machine learning-based prediction models in a cloud environment. To verify the reproducibility and portability of high-resolution numerical ocean model implementation on cloud computing, I simulated and analyzed the performance of a numerical ocean model at various resolutions in the model domain, including the Northwest Pacific Ocean, the East Sea, and the Yellow Sea. With the containerization method, it was possible to respond to changes in various infrastructure environments and achieve computational reproducibility effectively. The data augmentation of subsurface temperature data was performed using generative models to prepare large datasets for model training to predict the vertical temperature distribution in the ocean. To train the prediction model, data augmentation was performed using a generative model for observed data that is relatively insufficient compared to satellite dataset. In addition to observation data, HYCOM datasets were used for performance comparison, and the data distribution of augmented data was similar to the input data distribution. The ensemble method, which combines stand-alone predictive models, improved the performance of the predictive model compared to that of the model based on the existing observed data. Large amounts of computational resources were required for data synthesis, and the synthesis was performed in a cloud-based graphics processing unit environment. High-resolution numerical ocean model simulation, predictive model development, and the data generation method can improve predictive capabilities in the field of ocean science. The numerical modeling and generative models based on cloud computing used in this study can be broadly applied to various fields of earth science.์ง€๊ตฌ์˜ ๋ณ€ํ™”์™€ ํ˜„์ƒ์„ ์—ฐ๊ตฌํ•˜๊ธฐ ์œ„ํ•ด ๋งŽ์€ ๊ณผํ•™์ž๋“ค์€ ์ˆ˜์น˜ ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๊ณ ํ•ด์ƒ๋„ ๋ชจ๋ธ ๊ฒฐ๊ณผ๋ฅผ ์‚ฌ์šฉํ•˜๊ฑฐ๋‚˜ ๊ด€์ธก๋œ ๋ฐ์ดํ„ฐ๋กœ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ฐœ๋ฐœํ•˜๊ณ  ํ™œ์šฉํ•œ๋‹ค. ์ •๋ณด๊ธฐ์ˆ ์ด ๋ฐœ์ „ํ•จ์— ๋”ฐ๋ผ ์ง€์—ญ ๋ฐ ์ „ ์ง€๊ตฌ์ ์ธ ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ๋ชจ๋ธ๋ง๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์ง€๊ตฌ๊ณผํ•™ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์„ ์œ„ํ•œ ์‹ค์šฉ์ ์ธ ๋ฐฉ๋ฒ•๋ก ์ด ํ•„์š”ํ•˜๋‹ค. ๋ณธ ์—ฐ๊ตฌ๋Š” ์ง€๊ตฌ๊ณผํ•™์˜ ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ๋ชจ๋ธ๊ณผ ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•œ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐ ์ฒ˜๋ฆฌ๊ฐ€ ํด๋ผ์šฐ๋“œ ํ™˜๊ฒฝ์—์„œ ํšจ๊ณผ์ ์œผ๋กœ ๊ตฌํ˜„๋  ์ˆ˜ ์žˆ์Œ์„ ์ œ์•ˆํ•œ๋‹ค. ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ…์—์„œ ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ํ•ด์–‘ ๋ชจ๋ธ ๊ตฌํ˜„์˜ ์žฌํ˜„์„ฑ๊ณผ ์ด์‹์„ฑ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ๋ถ์„œํƒœํ‰์–‘, ๋™ํ•ด, ํ™ฉํ•ด ๋“ฑ ๋ชจ๋ธ ์˜์—ญ์˜ ๋‹ค์–‘ํ•œ ํ•ด์ƒ๋„์—์„œ ์ˆ˜์น˜ ํ•ด์–‘ ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์„ ์‹œ๋ฎฌ๋ ˆ์ด์…˜ํ•˜๊ณ  ๋ถ„์„ํ•˜์˜€๋‹ค. ์ปจํ…Œ์ด๋„ˆํ™” ๋ฐฉ์‹์„ ํ†ตํ•ด ๋‹ค์–‘ํ•œ ์ธํ”„๋ผ ํ™˜๊ฒฝ ๋ณ€ํ™”์— ๋Œ€์‘ํ•˜๊ณ  ๊ณ„์‚ฐ ์žฌํ˜„์„ฑ์„ ํšจ๊ณผ์ ์œผ๋กœ ํ™•๋ณดํ•  ์ˆ˜ ์žˆ์—ˆ๋‹ค. ๋จธ์‹ ๋Ÿฌ๋‹ ๊ธฐ๋ฐ˜ ๋ฐ์ดํ„ฐ ์ƒ์„ฑ์˜ ์ ์šฉ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ์ƒ์„ฑ ๋ชจ๋ธ์„ ์ด์šฉํ•œ ํ‘œ์ธต ์ดํ•˜ ์˜จ๋„ ๋ฐ์ดํ„ฐ์˜ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์‹คํ–‰ํ•˜์—ฌ ํ•ด์–‘์˜ ์ˆ˜์ง ์˜จ๋„ ๋ถ„ํฌ๋ฅผ ์˜ˆ์ธกํ•˜๋Š” ๋ชจ๋ธ ํ›ˆ๋ จ์„ ์œ„ํ•œ ๋Œ€์šฉ๋Ÿ‰ ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์ค€๋น„ํ–ˆ๋‹ค. ์˜ˆ์ธก๋ชจ๋ธ ํ›ˆ๋ จ์„ ์œ„ํ•ด ์œ„์„ฑ ๋ฐ์ดํ„ฐ์— ๋น„ํ•ด ์ƒ๋Œ€์ ์œผ๋กœ ๋ถ€์กฑํ•œ ๊ด€์ธก ๋ฐ์ดํ„ฐ์— ๋Œ€ํ•ด์„œ ์ƒ์„ฑ ๋ชจ๋ธ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ฆ๊ฐ•์„ ์ˆ˜ํ–‰ํ•˜์˜€๋‹ค. ๋ชจ๋ธ์˜ ์˜ˆ์ธก์„ฑ๋Šฅ ๋น„๊ต์—๋Š” ๊ด€์ธก ๋ฐ์ดํ„ฐ ์™ธ์—๋„ HYCOM ๋ฐ์ดํ„ฐ ์„ธํŠธ๋ฅผ ์‚ฌ์šฉํ•˜์˜€์œผ๋ฉฐ, ์ฆ๊ฐ• ๋ฐ์ดํ„ฐ์˜ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ๋Š” ์ž…๋ ฅ ๋ฐ์ดํ„ฐ ๋ถ„ํฌ์™€ ์œ ์‚ฌํ•จ์„ ํ™•์ธํ•˜์˜€๋‹ค. ๋…๋ฆฝํ˜• ์˜ˆ์ธก ๋ชจ๋ธ์„ ๊ฒฐํ•ฉํ•œ ์•™์ƒ๋ธ” ๋ฐฉ์‹์€ ๊ธฐ์กด ๊ด€์ธก ๋ฐ์ดํ„ฐ๋ฅผ ๊ธฐ๋ฐ˜์œผ๋กœ ํ•˜๋Š” ์˜ˆ์ธก ๋ชจ๋ธ์˜ ์„ฑ๋Šฅ์— ๋น„ํ•ด ํ–ฅ์ƒ๋˜์—ˆ๋‹ค. ๋ฐ์ดํ„ฐํ•ฉ์„ฑ์„ ์œ„ํ•ด ๋งŽ์€ ์–‘์˜ ๊ณ„์‚ฐ ์ž์›์ด ํ•„์š”ํ–ˆ์œผ๋ฉฐ, ๋ฐ์ดํ„ฐ ํ•ฉ์„ฑ์€ ํด๋ผ์šฐ๋“œ ๊ธฐ๋ฐ˜ GPU ํ™˜๊ฒฝ์—์„œ ์ˆ˜ํ–‰๋˜์—ˆ๋‹ค. ๊ณ ํ•ด์ƒ๋„ ์ˆ˜์น˜ ํ•ด์–‘ ๋ชจ๋ธ ์‹œ๋ฎฌ๋ ˆ์ด์…˜, ์˜ˆ์ธก ๋ชจ๋ธ ๊ฐœ๋ฐœ, ๋ฐ์ดํ„ฐ ์ƒ์„ฑ ๋ฐฉ๋ฒ•์€ ํ•ด์–‘ ๊ณผํ•™ ๋ถ„์•ผ์—์„œ ์˜ˆ์ธก ๋Šฅ๋ ฅ์„ ํ–ฅ์ƒ์‹œํ‚ฌ ์ˆ˜ ์žˆ๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ ์‚ฌ์šฉ๋œ ํด๋ผ์šฐ๋“œ ์ปดํ“จํŒ… ๊ธฐ๋ฐ˜์˜ ์ˆ˜์น˜ ๋ชจ๋ธ๋ง ๋ฐ ์ƒ์„ฑ ๋ชจ๋ธ์€ ์ง€๊ตฌ ๊ณผํ•™์˜ ๋‹ค์–‘ํ•œ ๋ถ„์•ผ์— ๊ด‘๋ฒ”์œ„ํ•˜๊ฒŒ ์ ์šฉ๋  ์ˆ˜ ์žˆ๋‹ค.1. General Introduction 1 2. Performance of numerical ocean modeling on cloud computing 6 2.1. Introduction 6 2.2. Cloud Computing 9 2.2.1. Cloud computing overview 9 2.2.2. Commercial cloud computing services 12 2.3. Numerical model for performance analysis of commercial clouds 15 2.3.1. High Performance Linpack Benchmark 15 2.3.2. Benchmark Sustainable Memory Bandwidth and Memory Latency 16 2.3.3. Numerical Ocean Model 16 2.3.4. Deployment of Numerical Ocean Model and Benchmark Packages on Cloud Clusters 19 2.4. Simulation results 21 2.4.1. Benchmark simulation 21 2.4.2. Ocean model simulation 24 2.5. Analysis of ROMS performance on commercial clouds 26 2.5.1. Performance of ROMS according to H/W resources 26 2.5.2. Performance of ROMS according to grid size 34 2.6. Summary 41 3. Reproducibility of numerical ocean model on the cloud computing 44 3.1. Introduction 44 3.2. Containerization of numerical ocean model 47 3.2.1. Container virtualization 47 3.2.2. Container-based architecture for HPC 49 3.2.3. Container-based architecture for hybrid cloud 53 3.3. Materials and Methods 55 3.3.1. Comparison of traditional and container based HPC cluster workflows 55 3.3.2. Model domain and datasets for numerical simulation 57 3.3.3. Building the container image and registration in the repository 59 3.3.4. Configuring a numeric model execution cluster 64 3.4. Results and Discussion 74 3.4.1. Reproducibility 74 3.4.2. Portability and Performance 76 3.5. Conclusions 81 4. Generative models for the prediction of ocean temperature profile 84 4.1. Introduction 84 4.2. Materials and Methods 87 4.2.1. Model domain and datasets for predicting the subsurface temperature 87 4.2.2. Model architecture for predicting the subsurface temperature 90 4.2.3. Neural network generative models 91 4.2.4. Prediction Models 97 4.2.5. Accuracy 103 4.3. Results and Discussion 104 4.3.1. Data Generation 104 4.3.2. Ensemble Prediction 109 4.3.3. Limitations of this study and future works 111 4.4. Conclusion 111 5. Summary and conclusion 114 6. References 118 7. Abstract (in Korean) 140๋ฐ•

    Comparative analysis of spring flood risk reduction measures in Alaska, United States and the Sakha Republic, Russia

    Get PDF
    Thesis (Ph.D.) University of Alaska Fairbanks, 2017River ice thaw and breakup are an annual springtime phenomena in the North. Depending on regional weather patterns and river morphology, breakups can result in catastrophic floods in exposed and vulnerable communities. Breakup flood risk is especially high in rural and remote northern communities, where flood relief and recovery are complicated by unique geographical and climatological features, and limited physical and communication infrastructure. Proactive spring flood management would significantly minimize the adverse impacts of spring floods. Proactive flood management entails flood risk reduction through advances in ice jam and flood prevention, forecasting and mitigation, and community preparedness. With the goal to identify best practices in spring flood risk reduction, I conducted a comparative case study between two flood-prone communities, Galena in Alaska, United States and Edeytsy in the Sakha Republic, Russia. Within a week from each other, Galena and Edeytsy sustained major floods in May 2013. Methods included focus groups with the representatives from flood managing agencies, surveys of families impacted by the 2013 floods, observations on site, and archival review. Comparative parameters of the study included natural and human causes of spring floods, effectiveness of spring flood mitigation and preparedness strategies, and the role of interagency communication and cooperation in flood risk reduction. The analysis revealed that spring flood risk in Galena and Edeytsy results from complex interactions among a series of natural processes and human actions that generate conditions of hazard, exposure, and vulnerability. Therefore, flood risk in Galena and Edeytsy can be reduced by managing conditions of ice-jam floods, and decreasing exposure and vulnerability of the at-risk populations. Implementing the Pressure and Release model to analyze the vulnerability progression of Edeytsy and Galena points to common root causes at the two research sites, including colonial heritage, unequal distribution of resources and power, top-down governance, and limited inclusion of local communities in the decision-making process. To construct an appropriate flood risk reduction framework it is important to establish a dialogue among the diverse stakeholders on potential solutions, arriving at a range of top-down and bottom-up initiatives and in conjunction selecting the appropriate strategies. Both communities have progressed in terms of greater awareness of the hazard, reduction in vulnerabilities, and a shift to more reliance on shelter-in-place. However, in neither community have needed improvements in levee protection been completed. Dialogue between outside authorities and the community begins earlier and is more intensive for Edeytsy, perhaps accounting for Edeytsy's more favorable rating of risk management and response than Galena's

    Abstracts

    Get PDF

    Reduced order methods for laminar and turbulent flows in a finite volume setting: projection-based methods and data-driven techniques

    Get PDF
    This dissertation presents a family of Reduced Order Models (ROMs) which is specifically designed to deal with both laminar and turbulent flows in a finite volume full order setting. Several aspects associated with the reduction of the incompressible Navier\u2013Stokes equations have been investigated. The first of them is related to the need of an accurate reduced pressure reconstruction. This issue has been studied with the help of two main approaches which consist in the use of the Pressure Poisson Equation (PPE) at the reduced order level and also the employment of the supremizer stabilization method. A second aspect is connected with the enforcement of non-homogeneous Dirichlet boundary conditions at the inlet boundary at the reduced order level. The solutions to address this aspect include two methods, namely, the lifting function method and the penalty method. Different solutions for the treatment of turbulence at the reduced order level have been proposed. We have developed a unified reduction approach which is capable of dealing with turbulent flows based on the Reynolds Averaged Navier\u2013Stokes (RANS) equations complemented by any Eddy Viscosity Model (EVM). The turbulent ROM developed is versatile in the sense that it may be applied on the FOM solutions obtained by different turbulent closure models or EVMs. This is made possible thanks to the formulation of the ROM which merges projection-based techniques with data-driven reduction strategies. In particular, the work presents a mixed strategy that exploits a data-driven reduction method to approximate the eddy viscosity solution manifold and a classical POD-Galerkin projection approach for the velocity and the pressure fields. The newly proposed turbulent ROM has been validated on benchmark test cases in both steady and unsteady settings with Reynolds up to Re 10 to 5

    Interdisciplinarity in science education in France: analysis of approaches and their application to the vibrating string case study

    Get PDF
    This thesis explores the relations among STEM-disciplines in France, with a special focus on the interaction between mathematics and physics. It presents the French high school system that recently underwent a governmental reform called BAC 2021. The work examines different approaches to interdisciplinarity in a context of science education, illustrating in particular the Julie Thompson Kleinโ€™s taxonomy. Six French researchers working with interdisciplinary were interviewed. The analysis with the Kleinโ€™s theoretical lenses of the definitions of interdisciplinarity collected in the interviews points out some practical criteria to compare and distinguish among methodological, theoretical, instrumental and critical interdisciplinarity. The thesis claims that the collaboration of people having different backgrounds is enriching because experts of various domains know different epistemologies. Some critical opinion towards the new reform BAC 2021 are expressed, especially about interdisciplinarity. Despite the introduction of a new subject of science education, it has emerged the fact that in the French education system the STEM topics seem still not to be present enough. Introducing the STEM-related problems in the teaching should be supported by an adequate university teaching research. In the end, a historical case study of the vibrating string controversy is presented. Starting with a modern treatment of the problem, the thesis problematizes the fact that often it is presented as a simple exercise, whilst, it represented a very emblematic case of interdisciplinarity. Through the historical contextualisation with the biographies of the protagonists and the analysis of the debate it highlights the analysis of the interdisciplinarity between mathematics and physics in a theme proposed in the second-grade syllabus of the school subject โ€œscience educationโ€. The last part of the chapter develops the narrative of the debate and suggests some didactic implementations

    Manuscript: You Can\u27t Patent Software: Patenting Software is Wrong

    Get PDF

    Computational micro-flow with spectral element method and high Reynolds number flow with discontinuous Galerkin Finite Element Method

    Get PDF
    In this dissertation, two numerical methods with high order accuracy, Spectral Element Method (SEM) and Discontinuous Galerkin Finite Element Method (DG-FEM), are chosen to solve problems in Computational Fluid Dynamics (CFD). The merits of these two methods will be discussed and utilized in different kinds of CFD problems. The simulations of the micro-flow systems with complex geometries and physical applications will be presented by SEM. Moreover, the numerical solutions for the Hyperbolic Flow will be obtained by DG-FEM. By solving problems with these two methods, the differences between them will be discussed as well. Compressible Navier-Stokes equations with Electro-osmosis body force and slip boundary conditions are solved to simulate two independent models. The third order Adams-Bashforth method on time splitting, and up to the eighth order SEM on space analysis are utilized in our cases of the electro-osmosis flow (EOF). To solve the body force caused by EOF, simplification of the Poisson-Boltzmann is discussed in details. Results show that SEM can clearly simulate the electric double layers in EOF. Compared with the finite element method, which uses h-refinement to increase resolution, SEM has obvious advantages by using hp-refinement. The other case for SEM is the simulations of drug delivery through the micro needle. The drug flowing inside the needle is treated as a micro-flow system with complex geometry, while the process of drug fluxing in human skin is developed as in the case of CFD problem in porous media. Incompressible Navier-Stokes equations and Darcy-Brinkman equations are solved to simulate the drug flowing inside the needle and diffusing in human skin, respectively. Results are compared with COMSOL simulation, experimental data, and numerical solutions from Smoothed Particle Hydrodynamics (SPH). The high order DG-FEM method is chosen to do research on Hyperbolic Flow

    Dynamic and turbulent premixed combustion using flamelet-generated manifold in openFOAM

    Get PDF
    • โ€ฆ
    corecore