469 research outputs found

    Autonomous Underwater Vehicle: 5G Network Design and Simulation Based on Mimetic Technique Control System

    Get PDF
    The Internet of Underwater Things (IoUT) exhibits promising advancement with underwater acoustic wireless network communication (UWSN). Conventionally, IoUT has been utilized for the offshore monitoring and exploration of the environment within the underwater region. The data exchange between the IoUT has been performed with the 5G enabled-communication to establish the connection with the futuristic underwater monitoring. However, the acoustic waves in underwater communication are subjected to longer propagation delay and higher transmission energy. To overcome those issues autonomous underwater vehicle (AUV) is implemented for the data collection and routing based on cluster formation. This paper developed a memetic algorithm-based AUV monitoring system for the underwater environment. The proposed Autonomous 5G Memetic (A5GMEMETIC) model performs the data collection and transmission to increase the USAN performance. The A5GMEMETIC model data collection through the dynamic unaware clustering model minimizes energy consumption. The A5GMemetic optimizes the location of the nodes in the underwater environment for the optimal data path estimation for the data transmission in the network. Simulation analysis is performed comparatively with the proposed A5Gmemetic with the conventional AEDG, DGS, and HAMA models. The comparative analysis expressed that the proposed A5GMeMEMETIC model exhibits the ~12% increased packet delivery ratio (PDR), ~9% reduced delay and ~8% improved network lifetime

    A Multi-objective Evolutionary Algorithm to solve Complex Optimization Problems

    Get PDF
    Multi-objective optimization problem formulations reflect pragmatic modeling of several real-life complex optimization problems. In many of them the considered objectives are competitive with each other; emphasizing only one of them during solution generation and evolution incurs high probability of producing a one-sided solution, which is unacceptable with respect to other objectives. An appropriate solution to the multi-objective optimization problem is to investigate a set of solutions that satisfy all of the competing objectives to an acceptable extent, where no solution in the solution set is dominated by others in terms of objective optimization. In this work, we investigate well known Non-dominated Sorting Genetic Algorithm (NSGA-II), and Strength Pareto Evolutionary Algorithm (SPEA-II), to find Pareto optimal solutions for two real-life problems: Task-based Sailor Assignment Problem (TSAP) and Coverage and Lifetime Optimization Problem in Wireless Sensor Networks (CLOP). Both of these problems are multi-objective problems. TSAP constitutes five multi-directional objectives, whereas CLOP is composed of two competing objectives. To validate the special operators developed, these two test bed problems have been used. Finally, traditional NSGA-II and SPEA-II have been blended with these special operators to generate refined solutions of these multi-objective optimization problems

    A Novel Design Approach to X-Band Minkowski Reflectarray Antennas using the Full-Wave EM Simulation-based Complete Neural Model with a Hybrid GA-NM Algorithm

    Get PDF
    In this work, a novel multi-objective design optimization procedure is presented for the Minkowski Reflectarray RAs using a complete 3-D CST Microwave Studio MWS-based Multilayer Perceptron Neural Network MLP NN model including the substrate constant εr with a hybrid Genetic GA and Nelder-Mead NM algorithm. The MLP NN model provides an accurate and fast model and establishes the reflection phase of a unit Minkowski RA element as a continuous function within the input domain including the substrate 1 ≤ εr ≤ 6; 0.5mm ≤ h ≤ 3mm in the frequency between 8GHz ≤ f ≤ 12GHz. This design procedure enables a designer to obtain not only the most optimum Minkowski RA design all throughout the X- band, at the same time the optimum Minkowski RAs on the selected substrates. Moreover a design of a fully optimized X-band 15×15 Minkowski RA antenna is given as a worked example with together the tolerance analysis and its performance is also compared with those of the optimized RAs on the selected traditional substrates. Finally it may be concluded that the presented robust and systematic multi-objective design procedure is conveniently applied to the Microstrip Reflectarray RAs constructed from the advanced patches

    VLSI Design

    Get PDF
    This book provides some recent advances in design nanometer VLSI chips. The selected topics try to present some open problems and challenges with important topics ranging from design tools, new post-silicon devices, GPU-based parallel computing, emerging 3D integration, and antenna design. The book consists of two parts, with chapters such as: VLSI design for multi-sensor smart systems on a chip, Three-dimensional integrated circuits design for thousand-core processors, Parallel symbolic analysis of large analog circuits on GPU platforms, Algorithms for CAD tools VLSI design, A multilevel memetic algorithm for large SAT-encoded problems, etc

    Differential evolution with an evolution path: a DEEP evolutionary algorithm

    Get PDF
    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs

    Applied (Meta)-Heuristic in Intelligent Systems

    Get PDF
    Engineering and business problems are becoming increasingly difficult to solve due to the new economics triggered by big data, artificial intelligence, and the internet of things. Exact algorithms and heuristics are insufficient for solving such large and unstructured problems; instead, metaheuristic algorithms have emerged as the prevailing methods. A generic metaheuristic framework guides the course of search trajectories beyond local optimality, thus overcoming the limitations of traditional computation methods. The application of modern metaheuristics ranges from unmanned aerial and ground surface vehicles, unmanned factories, resource-constrained production, and humanoids to green logistics, renewable energy, circular economy, agricultural technology, environmental protection, finance technology, and the entertainment industry. This Special Issue presents high-quality papers proposing modern metaheuristics in intelligent systems
    • …
    corecore