217 research outputs found

    Memetic Search for the Generalized Quadratic Multiple Knapsack Problem

    Get PDF
    The generalized quadratic multiple knapsack problem (GQMKP) extends the classical quadratic multiple knapsack problem with setups and knapsack preference of the items. The GQMKP can accommodate a number of real-life applications and is computationally difficult. In this paper, we demonstrate the interest of the memetic search approach for approximating the GQMKP by presenting a highly effective memetic algorithm (denoted by MAGQMK). The algorithm combines a backbone-based crossover operator (to generate offspring solutions) and a multineighborhood simulated annealing procedure (to find high quality local optima). To prevent premature convergence of the search, MAGQMK employs a quality-and-distance (QD) pool updating strategy. Extensive experiments on two sets of 96 benchmarks show a remarkable performance of the proposed approach. In particular, it discovers improved best solutions in 53 and matches the best known solutions for 39 other cases. A case study on a pseudo real-life problem demonstrates the efficacy of the proposed approach in practical situations. Additional analyses show the important contribution of the novel general-exchange neighborhood, the backbone-based crossover operator as well as the QD pool updating rule to the performance of the proposed algorithm

    Xqx Based Modeling For General Integer Programming Problems

    Get PDF
    We present a new way to model general integer programming (IP) problems with in- equality and equality constraints using XQX. We begin with the definition of IP problems folloby their practical applications, and then present the existing XQX based models to handle such problems. We then present our XQX model for general IP problems (including binary IP) with equality and inequality constraints, and also show how this model can be applied to problems with just inequality constraints. We then present the local optima based solution procedure for our XQX model. We also present new theorems and their proofs for our XQX model. Next, we present a detailed literature survey on the 0-1 multidimensional knapsack problem (MDKP) and apply our XQX model using our simple heuristic procedure to solve benchmark problems. The 0-1 MDKP is a binary IP problem with inequality con- straints and variables with binary values. We apply our XQX model using a heuristics we developed on 0-1 MDKP problems of various sizes and found that our model can handle any problem sizes and can provide reasonable quality results in reasonable time. Finally, we apply our XQX model developed for general integer programming problems on the general multi-dimensional knapsack problems. The general MDKP is a general IP problem with inequality constraints where the variables are positive integers. We apply our XQX model on GMDKP problems of various sizes and find that it can provide reasonable quality results in reasonable time. We also find that it can handle problems of any size and provide fea- sible and good quality solutions irrespective of the starting solutions. We conclude with a discussion of some issues related with our XQX model

    A memetic algorithm for minimizing the makespan in the Job Shop Scheduling problem

    Get PDF
    The Job Shop Scheduling Problem (JSP) is a combinatorial optimization problem cataloged as type NP-Hard. To solve this problem, several heuristics and metaheuristics have been used. In order to minimize the makespan, we propose a Memetic Algorithm (MA), which combines the exploration of the search space by a Genetic Algorithm (GA), and the exploitation of the solutions using a local search based on the neighborhood structure of Nowicki and Smutnicki. The genetic strategy uses an operation-based representation that allows generating feasible schedules, and a selection probability of the best individuals that are crossed using the JOX operator. The results of the implementation show that the algorithm is competitive with other approaches proposed in the literature

    Applying the big bang-big crunch metaheuristic to large-sized operational problems

    Get PDF
    In this study, we present an investigation of comparing the capability of a big bang-big crunch metaheuristic (BBBC) for managing operational problems including combinatorial optimization problems. The BBBC is a product of the evolution theory of the universe in physics and astronomy. Two main phases of BBBC are the big bang and the big crunch. The big bang phase involves the creation of a population of random initial solutions, while in the big crunch phase these solutions are shrunk into one elite solution exhibited by a mass center. This study looks into the BBBC’s effectiveness in assignment and scheduling problems. Where it was enhanced by incorporating an elite pool of diverse and high quality solutions; a simple descent heuristic as a local search method; implicit recombination; Euclidean distance; dynamic population size; and elitism strategies. Those strategies provide a balanced search of diverse and good quality population. The investigation is conducted by comparing the proposed BBBC with similar metaheuristics. The BBBC is tested on three different classes of combinatorial optimization problems; namely, quadratic assignment, bin packing, and job shop scheduling problems. Where the incorporated strategies have a greater impact on the BBBC's performance. Experiments showed that the BBBC maintains a good balance between diversity and quality which produces high-quality solutions, and outperforms other identical metaheuristics (e.g. swarm intelligence and evolutionary algorithms) reported in the literature

    Internet of Things in urban waste collection

    Get PDF
    Nowadays, the waste collection management has an important role in urban areas. This paper faces this issue and proposes the application of a metaheuristic for the optimization of a weekly schedule and routing of the waste collection activities in an urban area. Differently to several contributions in literature, fixed periodic routes are not imposed. The results significantly improve the performance of the company involved, both in terms of resources used and costs saving

    Revisiting the Evolution and Application of Assignment Problem: A Brief Overview

    Get PDF
    The assignment problem (AP) is incredibly challenging that can model many real-life problems. This paper provides a limited review of the recent developments that have appeared in the literature, meaning of assignment problem as well as solving techniques and will provide a review on   a lot of research studies on different types of assignment problem taking place in present day real life situation in order to capture the variations in different types of assignment techniques. Keywords: Assignment problem, Quadratic Assignment, Vehicle Routing, Exact Algorithm, Bound, Heuristic etc

    Hybrid tabu search – strawberry algorithm for multidimensional knapsack problem

    Get PDF
    Multidimensional Knapsack Problem (MKP) has been widely used to model real-life combinatorial problems. It is also used extensively in experiments to test the performances of metaheuristic algorithms and their hybrids. For example, Tabu Search (TS) has been successfully hybridized with other techniques, including particle swarm optimization (PSO) algorithm and the two-stage TS algorithm to solve MKP. In 2011, a new metaheuristic known as Strawberry algorithm (SBA) was initiated. Since then, it has been vastly applied to solve engineering problems. However, SBA has never been deployed to solve MKP. Therefore, a new hybrid of TS-SBA is proposed in this study to solve MKP with the objective of maximizing the total profit. The Greedy heuristics by ratio was employed to construct an initial solution. Next, the solution was enhanced by using the hybrid TS-SBA. The parameters setting to run the hybrid TS-SBA was determined by using a combination of Factorial Design of Experiments and Decision Tree Data Mining methods. Finally, the hybrid TS-SBA was evaluated using an MKP benchmark problem. It consisted of 270 test problems with different sizes of constraints and decision variables. The findings revealed that on average the hybrid TS-SBA was able to increase 1.97% profit of the initial solution. However, the best-known solution from past studies seemed to outperform the hybrid TS-SBA with an average difference of 3.69%. Notably, the novel hybrid TS-SBA proposed in this study may facilitate decisionmakers to solve real applications of MKP. It may also be applied to solve other variants of knapsack problems (KPs) with minor modifications
    • …
    corecore