5 research outputs found

    Metrics to guide a multi-objective evolutionary algorithm for ordinal classification

    Get PDF
    Ordinal classification or ordinal regression is a classification problem in which the labels have an ordered arrangement between them. Due to this order, alternative performance evaluation metrics are need to be used in order to consider the magnitude of errors. This paper presents a study of the use of a multi-objective optimization approach in the context of ordinal classification. We contribute a study of ordinal classification performance metrics, and propose a new performance metric, the maximum mean absolute error (MMAE). MMAE considers per-class distribution of patterns and the magnitude of the errors, both issues being crucial for ordinal regression problems. In addition, we empirically show that some of the performance metrics are competitive objectives, which justify the use of multi-objective optimization strategies. In our case, a multi-objective evolutionary algorithm optimizes an artificial neural network ordinal model with different pairs of metric combinations, and we conclude that the pair of the mean absolute error (MAE) and the proposed MMAE is the most favourable. A study of the relationship between the metrics of this proposal is performed, and the graphical representation in the two-dimensional space where the search of the evolutionary algorithm takes place is analysed. The results obtained show a good classification performance, opening new lines of research in the evaluation and model selection of ordinal classifiers

    Utilidad de las redes neuronales artificiales en la asignación donante-receptor en trasplante hepático

    Get PDF
    El disbalance existente entre el número de donantes y receptores en trasplante hepático hizo que se comenzaran a utilizar donantes con criterios expandidos. Este tipo de donantes, por definición, tienen mayor riesgo de desarrollar una pobre función inicial (IPF), una no función primaria (PNF) del injerto e incluso pueden condicionar una pérdida tardía del mismo. Es sabido que tanto factores del donante como del receptor y factores propios histológicos, de la extracción, de la preservación e incluso del transporte y el implante están implicados en la probabilidad de disfunción orgánica. Así, establecer cuál es la probabilidad de disfunción del injerto mediante la creación de pares donante-receptor en función del riesgo de pérdida del mismo y de la evolución post-trasplante influenciada por multiples variables que acontecen durante todo el periodo de donación-implante-evolución es el objetivo del presente estudio. Para ello, se utilizarán redes neuronales artificiales, que no son otra cosa que algoritmos de cálculo que emulan la capacidad de aprendizaje del sistema nervioso, de tal manera, que la red neuronal identifica un patrón a seguir entre las variables de entrada y las de la salida, teniendo como variable final la supervivencia del injerto y del receptor. Existen actualmente algoritmos que establecen el riesgo de fallo del injerto después de un trasplante hepático, sin embargo, pocos estudios han intentado desarrollar modelos capaces de predecir la supervivencia post-trasplante (1). Estos estudios están basados en experiencias unicéntricas, que carecen de número suficientemente grande de casos para establecer modelos con variables pormenorizadas, y con resultados difíciles de validar fuera de los centros donde se llevaron a cabo. Además, algunos de ellos se han realizado sobre series relativamente antiguas y cuya extrapolación del modelo propuesto al momento actual del trasplante es difícil. Recientemente cuatro modelos de predicción de riesgo basados en variables del donante o del donante y receptor han permitido obtener modelos más realistas que no adolecen de estos inconvenientes (2,3,4,5). En cuanto a las redes neuronales, consisten, desde un punto de vista técnico, en un grupo de unidades de proceso (nodos) que se asemejan a las neuronas al estar interconectadas por medio de un entramado de relaciones (pesos) análogas al concepto de conexiones sinápticas en el sistema nervioso. A partir de los nodos de entrada, la señal progresa a través de la red hasta proporcionar una respuesta en forma de nivel de activación de los nodos de salida. En un contexto médico, el entrenamiento consistiría en presentar a la red, de forma iterativa, los valores de distintas variables clínicas (en forma de valores de la capa de entrada) de cada paciente y conseguir que la red sea capaz de predecir el estado final observado en cada paciente (indicados por el estado de las capas de salida de la red) de la manera más precisa posible (6,7). La posibilidad de resolver problemas difíciles es gracias a los principios de las redes neuronales. Los cinco más importantes son: aprendizaje adaptativo, autoorganización, tolerancia a fallos, operación en tiempo real y fácil inserción en la tecnología existente. Estas características las hacen perfectas para resolver problemas en campos tan variados como la agricultura, la bibliometria, economía y medicina (8,9,10)

    Training Convolutional Neural Networks Using An Automated Feedback Loop To Estimate The Population Of Avian Species

    Get PDF
    Using automated processes to detect wildlife in uncontrolled outdoor imagery in the field of wildlife ecology is challenging task. This is especially true in imagery provided by an Unmanned Aerial System (UAS), where the relative size of wildlife is small and visually similar to its background. In the UAS imagery collected by the Wildlife@Home project, the data is also extremely unbalanced, with less than 1% of area in the imagery being of wildlife. To tackle these challenges, the Wildlife@Home project has employed citizen scientists and trained experts to go through collected UAS imagery and classify it. Classified data are used as inputs to convolutional neural networks (CNNs) which seek to automatically mark which areas of the imagery contain wildlife. The output of the CNN is then passed to a blob counter which returns a population estimate for the image. A feedback loop was developed to help train the CNNs to better differentiate between the wildlife and the the visually similar background and deal with the disparate amount of wildlife training images versus background training images. When using the feedback loop and citizen scientist provided data, population estimates by the CNN and blob counter are within 3.93% of the manual count by the field biologists. When expert provided data is used the estimates are within 5.24%. This is improved from 150% and 88% error in previous work which did not employ a feedback loop for the citizen science and expert data, respectively. Citizen scientist data worked better than expert data in the current work potentially because a matching algorithm was used on the citizen scientist data but not the expert data

    Evolutionary multivariate time series prediction

    Get PDF
    Multivariate time series (MTS) prediction plays a significant role in many practical data mining applications, such as finance, energy supply, and medical care domains. Over the years, various prediction models have been developed to obtain robust and accurate prediction. However, this is not an easy task by considering a variety of key challenges. First, not all channels (each channel represents one time series) are informative (channel selection). Considering the complexity of each selected time series, it is difficult to predefine a time window used for inputs. Second, since the selected time series may come from cross domains collected with different devices, they may require different feature extraction techniques by considering suitable parameters to extract meaningful features (feature extraction), which influences the selection and configuration of the predictor, i.e., prediction (configuration). The challenge arising from channel selection, feature extraction, and prediction (configuration) is to perform them jointly to improve prediction performance. Third, we resort to ensemble learning to solve the MTS prediction problem composed of the previously mentioned operations,  where the challenge is to obtain a set of models satisfied both accurate and diversity. Each of these challenges leads to an NP-hard combinatorial optimization problem, which is impossible to be solved using the traditional methods since it is non-differentiable. Evolutionary algorithm (EA), as an efficient metaheuristic stochastic search technique, which is highly competent to solve complex combinatorial optimization problems having mixed types of decision variables, may provide an effective way to address the challenges arising from MTS prediction. The main contributions are supported by the following investigations. First, we propose a discrete evolutionary model, which mainly focuses on seeking the influential subset of channels of MTS and the optimal time windows for each of the selected channels for the MTS prediction task. A comprehensively experimental study on a real-world electricity consumption data with auxiliary environmental factors demonstrates the efficiency and effectiveness of the proposed method in searching for the informative time series and respective time windows and parameters in a predictor in comparison to the result obtained through enumeration. Subsequently, we define the basic MTS prediction pipeline containing channel selection, feature extraction, and prediction (configuration). To perform these key operations, we propose an evolutionary model construction (EMC) framework to seek the optimal subset of channels of MTS, suitable feature extraction methods and respective time windows applied to the selected channels, and parameter settings in the predictor simultaneously for the best prediction performance. To implement EMC, a two-step EA is proposed, where the first step EA mainly focuses on channel selection while in the second step, a specially designed EA works on feature extraction and prediction (configuration). A real-world electricity data with exogenous environmental information is used and the whole dataset is split into another two datasets according to holiday and nonholiday events. The performance of EMC is demonstrated on all three datasets in comparison to hybrid models and some existing methods. Then, based on the prediction pipeline defined previously, we propose an evolutionary multi-objective ensemble learning model (EMOEL) by employing multi-objective evolutionary algorithm (MOEA) subjected to two conflicting objectives, i.e., accuracy and model diversity. MOEA leads to a pareto front (PF) composed of non-dominated optimal solutions, where each of them represents the optimal subset of the selected channels, the selected feature extraction methods and the selected time windows, and the selected parameters in the predictor. To boost ultimate prediction accuracy, the models with respect to these optimal solutions are linearly combined with combination coefficients being optimized via a single-objective task-oriented EA. The superiority of EMOEL is identified on electricity consumption data with climate information in comparison to several state-of-the-art models. We also propose a multi-resolution selective ensemble learning model, where multiple resolutions are constructed from the minimal granularity using statistics. At the current time stamp, the preceding time series data is sampled at different time intervals (i.e., resolutions) to constitute the time windows. For each resolution, multiple base learners with different parameters are first trained. Feature selection technique is applied to search for the optimal set of trained base learners and least square regression is used to combine them. The performance of the proposed ensemble model is verified on the electricity consumption data for the next-step and next-day prediction. Finally, based on EMOEL and multi-resolution, instead of only combining the models generated from each PF, we propose an evolutionary ensemble learning (EEL) framework, where multiple PFs are aggregated to produce a composite PF (CPF) after removing the same solutions in PFs and being sorted into different levels of non-dominated fronts (NDFs). Feature selection techniques are applied to exploit the optimal subset of models in level-accumulated NDF and least square is used to combine the selected models. The performance of EEL that chooses three different predictors as base learners is evaluated by the comprehensive analysis of the parameter sensitivity. The superiority of EEL is demonstrated in comparison to the best result from single-objective EA and the best individual from the PF, and several state-of-the-art models across electricity consumption and air quality datasets, both of which use the environmental factors from other domains as the auxiliary factors. In summary, this thesis provides studies on how to build efficient and effective models for MTS prediction. The built frameworks investigate the influential factors, consider the pipeline composed of channel selection, feature extraction, and prediction (configuration) simultaneously, and keep good generalization and accuracy across different applications. The proposed algorithms to implement the frameworks use techniques from evolutionary computation (single-objective EA and MOEA), machine learning and data mining areas. We believe that this research provides a significant step towards constructing robust and accurate models for solving MTS prediction problems. In addition, with the case study on electricity consumption prediction, it will contribute to helping decision-makers in determining the trend of future energy consumption for scheduling and planning of the operations of the energy supply system
    corecore