60 research outputs found

    Unsupervised text Feature Selection using memetic Dichotomous Differential Evolution

    Get PDF
    Feature Selection (FS) methods have been studied extensively in the literature, and there are a crucial component in machine learning techniques. However, unsupervised text feature selection has not been well studied in document clustering problems. Feature selection could be modelled as an optimization problem due to the large number of possible solutions that might be valid. In this paper, a memetic method that combines Differential Evolution (DE) with Simulated Annealing (SA) for unsupervised FS was proposed. Due to the use of only two values indicating the existence or absence of the feature, a binary version of differential evolution is used. A dichotomous DE was used for the purpose of the binary version, and the proposed method is named Dichotomous Differential Evolution Simulated Annealing (DDESA). This method uses dichotomous mutation instead of using the standard mutation DE to be more effective for binary purposes. The Mean Absolute Distance (MAD) filter was used as the feature subset internal evaluation measure in this paper. The proposed method was compared with other state-of-the-art methods including the standard DE combined with SA, which is named DESA in this paper, using five benchmark datasets. The F-micro, F-macro (F-scores) and Average Distance of Document to Cluster (ADDC) measures were utilized as the evaluation measures. The Reduction Rate (RR) was also used as an evaluation measure. Test results showed that the proposed DDESA outperformed the other tested methods in performing the unsupervised text feature selection

    Reinforcement-Enhanced Autoregressive Feature Transformation: Gradient-steered Search in Continuous Space for Postfix Expressions

    Full text link
    Feature transformation aims to generate new pattern-discriminative feature space from original features to improve downstream machine learning (ML) task performances. However, the discrete search space for the optimal feature explosively grows on the basis of combinations of features and operations from low-order forms to high-order forms. Existing methods, such as exhaustive search, expansion reduction, evolutionary algorithms, reinforcement learning, and iterative greedy, suffer from large search space. Overly emphasizing efficiency in algorithm design usually sacrifices stability or robustness. To fundamentally fill this gap, we reformulate discrete feature transformation as a continuous space optimization task and develop an embedding-optimization-reconstruction framework. This framework includes four steps: 1) reinforcement-enhanced data preparation, aiming to prepare high-quality transformation-accuracy training data; 2) feature transformation operation sequence embedding, intending to encapsulate the knowledge of prepared training data within a continuous space; 3) gradient-steered optimal embedding search, dedicating to uncover potentially superior embeddings within the learned space; 4) transformation operation sequence reconstruction, striving to reproduce the feature transformation solution to pinpoint the optimal feature space.Comment: Accepted by NeurIPS 202

    A review of population-based metaheuristics for large-scale black-box global optimization: Part A

    Get PDF
    Scalability of optimization algorithms is a major challenge in coping with the ever growing size of optimization problems in a wide range of application areas from high-dimensional machine learning to complex large-scale engineering problems. The field of large-scale global optimization is concerned with improving the scalability of global optimization algorithms, particularly population-based metaheuristics. Such metaheuristics have been successfully applied to continuous, discrete, or combinatorial problems ranging from several thousand dimensions to billions of decision variables. In this two-part survey, we review recent studies in the field of large-scale black-box global optimization to help researchers and practitioners gain a bird’s-eye view of the field, learn about its major trends, and the state-of-the-art algorithms. Part of the series covers two major algorithmic approaches to large-scale global optimization: problem decomposition and memetic algorithms. Part of the series covers a range of other algorithmic approaches to large-scale global optimization, describes a wide range of problem areas, and finally touches upon the pitfalls and challenges of current research and identifies several potential areas for future research

    Neural inference search for multiloss segmentation models

    Get PDF
    Semantic segmentation is vital for many emerging surveillance applications, but current models cannot be relied upon to meet the required tolerance, particularly in complex tasks that involve multiple classes and varied environments. To improve performance, we propose a novel algorithm, neural inference search (NIS), for hyperparameter optimization pertaining to established deep learning segmentation models in conjunction with a new multiloss function. It incorporates three novel search behaviors, i.e., Maximized Standard Deviation Velocity Prediction, Local Best Velocity Prediction, and n -dimensional Whirlpool Search. The first two behaviors are exploratory, leveraging long short-term memory (LSTM)-convolutional neural network (CNN)-based velocity predictions, while the third employs n -dimensional matrix rotation for local exploitation. A scheduling mechanism is also introduced in NIS to manage the contributions of these three novel search behaviors in stages. NIS optimizes learning and multiloss parameters simultaneously. Compared with state-of-the-art segmentation methods and those optimized with other well-known search algorithms, NIS-optimized models show significant improvements across multiple performance metrics on five segmentation datasets. NIS also reliably yields better solutions as compared with a variety of search methods for solving numerical benchmark functions

    Computational Approaches to Explainable Artificial Intelligence:Advances in Theory, Applications and Trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    Inductive biases and metaknowledge representations for search-based optimization

    Get PDF
    "What I do not understand, I can still create."- H. Sayama The following work follows closely the aforementioned bonmot. Guided by questions such as: ``How can evolutionary processes exhibit learning behavior and consolidate knowledge?´´, ``What are cognitive models of problem-solving?´´ and ``How can we harness these altogether as computational techniques?´´, we clarify within this work essentials required to implement them for metaheuristic search and optimization.We therefore look into existing models of computational problem-solvers and compare these with existing methodology in literature. Particularly, we find that the meta-learning model, which frames problem-solving in terms of domain-specific inductive biases and the arbitration thereof through means of high-level abstractions resolves outstanding issues with methodology proposed within the literature. Noteworthy, it can be also related to ongoing research on algorithm selection and configuration frameworks. We therefore look in what it means to implement such a model by first identifying inductive biases in terms of algorithm components and modeling these with density estimation techniques. And secondly, propose methodology to process metadata generated by optimization algorithms in an automated manner through means of deep pattern recognition architectures for spatio-temporal feature extraction. At last we look into an exemplary shape optimization problem which allows us to gain insight into what it means to apply our methodology to application scenarios. We end our work with a discussion on future possible directions to explore and discuss the limitations of such frameworks for system deployment

    Computational approaches to Explainable Artificial Intelligence: Advances in theory, applications and trends

    Get PDF
    Deep Learning (DL), a groundbreaking branch of Machine Learning (ML), has emerged as a driving force in both theoretical and applied Artificial Intelligence (AI). DL algorithms, rooted in complex and non-linear artificial neural systems, excel at extracting high-level features from data. DL has demonstrated human-level performance in real-world tasks, including clinical diagnostics, and has unlocked solutions to previously intractable problems in virtual agent design, robotics, genomics, neuroimaging, computer vision, and industrial automation. In this paper, the most relevant advances from the last few years in Artificial Intelligence (AI) and several applications to neuroscience, neuroimaging, computer vision, and robotics are presented, reviewed and discussed. In this way, we summarize the state-of-the-art in AI methods, models and applications within a collection of works presented at the 9 International Conference on the Interplay between Natural and Artificial Computation (IWINAC). The works presented in this paper are excellent examples of new scientific discoveries made in laboratories that have successfully transitioned to real-life applications

    Opinion leader detection in Asian social networks using modified spider monkey optimization

    Get PDF
    The Asian social networks are dominated by the society’s collectivist culture, and this interestingly introduces a influence mechanism aided by word-of-mouth and opinion leaders. An opinion leader can help to generate and shape other people’s opinion and achieve a high information spread on any topic. In this work, a modified spider monkey optimization based opinion leader detection approach is proposed. Firstly, we employ the modified node2vec graph embedding to generate the lower dimensional vectors which act as the initial features for the nodes in a typical Asian social network. Next the entire population is broken down into several groups using the k-means++ algorithm where the number of clusters is equal to the number of opinion leaders to be selected. The local and global leaders are chosen by using the coordinates of the cluster centres of these clusters. The coordinates of the centroids of the clusters are then used to detect the local and global leaders in the network. The local leaders then form the seed set of opinion leaders for the network. The positions of the nodes in the network, including the local and global leaders, are updated over a number of iterations. At the end of these iterations, the seed set generating the maximum influence forms the set of opinion leaders in the network. We test our proposed approach using the popular information diffusion and cognitive opinion dynamics (COD) models. We perform intensive experiments on several real-life social networks based on various performance metrics. The results obtained reveal that the proposed approach outperforms several existing techniques of opinion leader detection
    corecore