5 research outputs found

    Parallel computing for brain simulation

    Get PDF
    [Abstract] Background: The human brain is the most complex system in the known universe, it is therefore one of the greatest mysteries. It provides human beings with extraordinary abilities. However, until now it has not been understood yet how and why most of these abilities are produced. Aims: For decades, researchers have been trying to make computers reproduce these abilities, focusing on both understanding the nervous system and, on processing data in a more efficient way than before. Their aim is to make computers process information similarly to the brain. Important technological developments and vast multidisciplinary projects have allowed creating the first simulation with a number of neurons similar to that of a human brain. Conclusion: This paper presents an up-to-date review about the main research projects that are trying to simulate and/or emulate the human brain. They employ different types of computational models using parallel computing: digital models, analog models and hybrid models. This review includes the current applications of these works, as well as future trends. It is focused on various works that look for advanced progress in Neuroscience and still others which seek new discoveries in Computer Science (neuromorphic hardware, machine learning techniques). Their most outstanding characteristics are summarized and the latest advances and future plans are presented. In addition, this review points out the importance of considering not only neurons: Computational models of the brain should also include glial cells, given the proven importance of astrocytes in information processing.Galicia. Conseller铆a de Cultura, Educaci贸n e Ordenaci贸n Universitaria; GRC2014/049Galicia. Conseller铆a de Cultura, Educaci贸n e Ordenaci贸n Universitaria; R2014/039Instituto de Salud Carlos III; PI13/0028

    Natural Order: The Case for Applying Biomimetic Design Principles to Mass Communication Technology Design

    Get PDF
    In this paper I tested the effectiveness of a biomimetically designed classifier algorithm in an effort to support a new argument for the systemic application of biomimetic design principles to mass communication technology. To supplement the purely system-level test, I conducted a series of interviews with interface-level designers regarding their own design strategies, generally accepted design strategies in the field of mass communication technology design, new design strategies, and the landscape of the field in general. The findings of my test lend strong credence to biomimicry\u27s potential systemic contribution to mass communication technology design, and the tone of the interview responses suggests that the practices of interface-level design are congruent with this contribution. I argue that the placement of biomimetic design principles at the systemic level would enhance the user-interface design practices already in place, given their congruency with biomimetic design principles. I argue that to improve usability, interactivity, and security, and to improve our consumption, storage, and transmission of information on a massive scale, the most prudent course of action is to concentrate biomimetic design strategies systemically--into our hardware, networks, and systems in general--and that user-interface design would not only accommodate the changes to our system-level designs, but that it would thrive on them

    Exploring Spin-transfer-torque devices and memristors for logic and memory applications

    Get PDF
    As scaling CMOS devices is approaching its physical limits, researchers have begun exploring newer devices and architectures to replace CMOS. Due to their non-volatility and high density, Spin Transfer Torque (STT) devices are among the most prominent candidates for logic and memory applications. In this research, we first considered a new logic style called All Spin Logic (ASL). Despite its advantages, ASL consumes a large amount of static power; thus, several optimizations can be performed to address this issue. We developed a systematic methodology to perform the optimizations to ensure stable operation of ASL. Second, we investigated reliable design of STT-MRAM bit-cells and addressed the conflicting read and write requirements, which results in overdesign of the bit-cells. Further, a Device/Circuit/Architecture co-design framework was developed to optimize the STT-MRAM devices by exploring the design space through jointly considering yield enhancement techniques at different levels of abstraction. Recent advancements in the development of memristive devices have opened new opportunities for hardware implementation of non-Boolean computing. To this end, the suitability of memristive devices for swarm intelligence algorithms has enabled researchers to solve a maze in hardware. In this research, we utilized swarm intelligence of memristive networks to perform image edge detection. First, we proposed a hardware-friendly algorithm for image edge detection based on ant colony. Next, we designed the image edge detection algorithm using memristive networks
    corecore