51 research outputs found

    Membership in moment polytopes is in NP and coNP

    Full text link
    We show that the problem of deciding membership in the moment polytope associated with a finite-dimensional unitary representation of a compact, connected Lie group is in NP and coNP. This is the first non-trivial result on the computational complexity of this problem, which naively amounts to a quadratically-constrained program. Our result applies in particular to the Kronecker polytopes, and therefore to the problem of deciding positivity of the stretched Kronecker coefficients. In contrast, it has recently been shown that deciding positivity of a single Kronecker coefficient is NP-hard in general [Ikenmeyer, Mulmuley and Walter, arXiv:1507.02955]. We discuss the consequences of our work in the context of complexity theory and the quantum marginal problem.Comment: 20 page

    Moment cone membership for quivers in strongly polynomial time

    Full text link
    In this note we observe that membership in moment cones of spaces of quiver representations can be decided in strongly polynomial time, for any acyclic quiver. This generalizes a recent result by Chindris-Collins-Kline for bipartite quivers. Their approach was to construct "multiplicity polytopes" with a geometric realization similar to the Knutson-Tao polytopes for tensor product multiplicities. Here we show that a less geometric but straightforward variant of their construction leads to such a multiplicity polytope for any acyclic quiver. Tardos' strongly polynomial time algorithm for combinatorial linear programming along with the saturation property then implies that moment cone membership can be decided in strongly polynomial time. The analogous question for semi-invariants remains open.Comment: 7 page

    On vanishing of Kronecker coefficients

    Full text link
    We show that the problem of deciding positivity of Kronecker coefficients is NP-hard. Previously, this problem was conjectured to be in P, just as for the Littlewood-Richardson coefficients. Our result establishes in a formal way that Kronecker coefficients are more difficult than Littlewood-Richardson coefficients, unless P=NP. We also show that there exists a #P-formula for a particular subclass of Kronecker coefficients whose positivity is NP-hard to decide. This is an evidence that, despite the hardness of the positivity problem, there may well exist a positive combinatorial formula for the Kronecker coefficients. Finding such a formula is a major open problem in representation theory and algebraic combinatorics. Finally, we consider the existence of the partition triples (λ,μ,π)(\lambda, \mu, \pi) such that the Kronecker coefficient kμ,πλ=0k^\lambda_{\mu, \pi} = 0 but the Kronecker coefficient klμ,lπlλ>0k^{l \lambda}_{l \mu, l \pi} > 0 for some integer l>1l>1. Such "holes" are of great interest as they witness the failure of the saturation property for the Kronecker coefficients, which is still poorly understood. Using insight from computational complexity theory, we turn our hardness proof into a positive result: We show that not only do there exist many such triples, but they can also be found efficiently. Specifically, we show that, for any 0<ϵ≤10<\epsilon\leq1, there exists 0<a<10<a<1 such that, for all mm, there exist Ω(2ma)\Omega(2^{m^a}) partition triples (λ,μ,μ)(\lambda,\mu,\mu) in the Kronecker cone such that: (a) the Kronecker coefficient kμ,μλk^\lambda_{\mu,\mu} is zero, (b) the height of μ\mu is mm, (c) the height of λ\lambda is ≤mϵ\le m^\epsilon, and (d) ∣λ∣=∣μ∣≤m3|\lambda|=|\mu| \le m^3. The proof of the last result illustrates the effectiveness of the explicit proof strategy of GCT.Comment: 43 pages, 1 figur

    Operator scaling with specified marginals

    Full text link
    The completely positive maps, a generalization of the nonnegative matrices, are a well-studied class of maps from n×nn\times n matrices to m×mm\times m matrices. The existence of the operator analogues of doubly stochastic scalings of matrices is equivalent to a multitude of problems in computer science and mathematics, such rational identity testing in non-commuting variables, noncommutative rank of symbolic matrices, and a basic problem in invariant theory (Garg, Gurvits, Oliveira and Wigderson, FOCS, 2016). We study operator scaling with specified marginals, which is the operator analogue of scaling matrices to specified row and column sums. We characterize the operators which can be scaled to given marginals, much in the spirit of the Gurvits' algorithmic characterization of the operators that can be scaled to doubly stochastic (Gurvits, Journal of Computer and System Sciences, 2004). Our algorithm produces approximate scalings in time poly(n,m) whenever scalings exist. A central ingredient in our analysis is a reduction from the specified marginals setting to the doubly stochastic setting. Operator scaling with specified marginals arises in diverse areas of study such as the Brascamp-Lieb inequalities, communication complexity, eigenvalues of sums of Hermitian matrices, and quantum information theory. Some of the known theorems in these areas, several of which had no effective proof, are straightforward consequences of our characterization theorem. For instance, we obtain a simple algorithm to find, when they exist, a tuple of Hermitian matrices with given spectra whose sum has a given spectrum. We also prove new theorems such as a generalization of Forster's theorem (Forster, Journal of Computer and System Sciences, 2002) concerning radial isotropic position.Comment: 34 pages, 3 page appendi

    On Vanishing of {K}ronecker Coefficients

    Get PDF
    It is shown that: (1) The problem of deciding positivity of Kronecker coefficients is NP-hard. (2) There exists a positive (#P\# P)-formula for a subclass of Kronecker coefficients whose positivity is NP-hard to decide. (3) For any 0<ϵ≤10 < \epsilon \le 1, there exists 0<a<10<a<1 such that, for all mm, there exist Ω(2ma)\Omega(2^{m^a}) partition triples (λ,μ,μ)(\lambda,\mu,\mu) in the Kronecker cone such that: (a) the Kronecker coefficient kμ,μλk^\lambda_{\mu,\mu} is zero, (b) the height of μ\mu is mm, (c) the height of λ\lambda is ≤mϵ\le m^\epsilon, and (d) ∣λ∣=∣μ∣≤m3|\lambda|= |\mu| \le m^3. The last result takes a step towards proving the existence of occurrence-based representation-theoretic obstructions in the context of the GCT approach to the permanent vs. determinant problem. Its proof also illustrates the effectiveness of the explicit proof strategy of GCT

    Efficient algorithms for tensor scaling, quantum marginals and moment polytopes

    Full text link
    We present a polynomial time algorithm to approximately scale tensors of any format to arbitrary prescribed marginals (whenever possible). This unifies and generalizes a sequence of past works on matrix, operator and tensor scaling. Our algorithm provides an efficient weak membership oracle for the associated moment polytopes, an important family of implicitly-defined convex polytopes with exponentially many facets and a wide range of applications. These include the entanglement polytopes from quantum information theory (in particular, we obtain an efficient solution to the notorious one-body quantum marginal problem) and the Kronecker polytopes from representation theory (which capture the asymptotic support of Kronecker coefficients). Our algorithm can be applied to succinct descriptions of the input tensor whenever the marginals can be efficiently computed, as in the important case of matrix product states or tensor-train decompositions, widely used in computational physics and numerical mathematics. We strengthen and generalize the alternating minimization approach of previous papers by introducing the theory of highest weight vectors from representation theory into the numerical optimization framework. We show that highest weight vectors are natural potential functions for scaling algorithms and prove new bounds on their evaluations to obtain polynomial-time convergence. Our techniques are general and we believe that they will be instrumental to obtain efficient algorithms for moment polytopes beyond the ones consider here, and more broadly, for other optimization problems possessing natural symmetries

    Membership in moment cones and quiver semi-invariants for bipartite quivers

    Full text link
    Let QQ be a bipartite quiver with vertex set Q0Q_0 such that the number of arrows between any two source and sink vertices is constant. Let β=(β(x))x∈Q0\beta=(\beta(x))_{x \in Q_0} be a dimension vector of QQ with positive integer coordinates, and let Δ(Q,β)\Delta(Q, \beta) be the moment cone associated to (Q,β)(Q, \beta). We show that the membership problem for Δ(Q,β)\Delta(Q, \beta) can be solved in strongly polynomial time. As a key step in our approach, we first solve the polytopal problem for semi-invariants of QQ and its flag-extensions. Specifically, let QβQ_{\beta} be the flag-extension of QQ obtained by attaching a flag F(x)\mathcal{F}(x) of length β(x)−1\beta(x)-1 at every vertex xx of QQ, and let β~\widetilde{\beta} be the extension of β\beta to QβQ_{\beta} that takes values 1,…,β(x)1, \ldots, \beta(x) along the vertices of the flag F(x)\mathcal{F}(x) for every vertex xx of QQ. For an integral weight σ~\widetilde{\sigma} of QβQ_{\beta}, let Kσ~K_{\widetilde{\sigma}} be the dimension of the space of semi-invariants of weight σ~\widetilde{\sigma} on the representation space of β~\widetilde{\beta}-dimensional complex representations of QβQ_{\beta}. We show that Kσ~K_{\widetilde{\sigma}} can be expressed as the number of lattice points of a certain hive-type polytope. This polytopal description together with Derksen-Weyman's Saturation Theorem for quiver semi-invariants allows us to use Tardos's algorithm to solve the membership problem for Δ(Q,β)\Delta(Q,\beta) in strongly polynomial time.Comment: v2: Fixed the claim about the generic quiver semi-stability problem (see Remarks 2.8 and 5.5

    Algebraic combinatorial optimization on the degree of determinants of noncommutative symbolic matrices

    Full text link
    We address the computation of the degrees of minors of a noncommutative symbolic matrix of form A[c]:=∑k=1mAktckxk, A[c] := \sum_{k=1}^m A_k t^{c_k} x_k, where AkA_k are matrices over a field K\mathbb{K}, xix_i are noncommutative variables, ckc_k are integer weights, and tt is a commuting variable specifying the degree. This problem extends noncommutative Edmonds' problem (Ivanyos et al. 2017), and can formulate various combinatorial optimization problems. Extending the study by Hirai 2018, and Hirai, Ikeda 2022, we provide novel duality theorems and polyhedral characterization for the maximum degrees of minors of A[c]A[c] of all sizes, and develop a strongly polynomial-time algorithm for computing them. This algorithm is viewed as a unified algebraization of the classical Hungarian method for bipartite matching and the weight-splitting algorithm for linear matroid intersection. As applications, we provide polynomial-time algorithms for weighted fractional linear matroid matching and linear optimization over rank-2 Brascamp-Lieb polytopes

    Barriers for Recent Methods in Geodesic Optimization

    Get PDF
    • …
    corecore