1,110 research outputs found

    The submonoid and rational subset membership problems for graph groups

    Get PDF
    We show that the membership problem in a finitely generated submonoid of a graph group (also called a right-angled Artin group or a free partially commutative group) is decidable if and only if the independence graph (commutation graph) is a transitive forest. As a consequence we obtain the first example of a finitely presented group with a decidable generalized word problem that does not have a decidable membership problem for finitely generated submonoids. We also show that the rational subset membership problem is decidable for a graph group if and only if the independence graph is a transitive forest, answering a question of Kambites, Silva, and the second author. Finally we prove that for certain amalgamated free products and HNN-extensions the rational subset and submonoid membership problems are recursively equivalent. In particular, this applies to finitely generated groups with two or more ends that are either torsion-free or residually finite

    Timed pushdown automata revisited

    Full text link
    This paper contains two results on timed extensions of pushdown automata (PDA). As our first result we prove that the model of dense-timed PDA of Abdulla et al. collapses: it is expressively equivalent to dense-timed PDA with timeless stack. Motivated by this result, we advocate the framework of first-order definable PDA, a specialization of PDA in sets with atoms, as the right setting to define and investigate timed extensions of PDA. The general model obtained in this way is Turing complete. As our second result we prove NEXPTIME upper complexity bound for the non-emptiness problem for an expressive subclass. As a byproduct, we obtain a tight EXPTIME complexity bound for a more restrictive subclass of PDA with timeless stack, thus subsuming the complexity bound known for dense-timed PDA.Comment: full technical report of LICS'15 pape

    On the rational subset problem for groups

    Get PDF
    We use language theory to study the rational subset problem for groups and monoids. We show that the decidability of this problem is preserved under graph of groups constructions with finite edge groups. In particular, it passes through free products amalgamated over finite subgroups and HNN extensions with finite associated subgroups. We provide a simple proof of a result of Grunschlag showing that the decidability of this problem is a virtual property. We prove further that the problem is decidable for a direct product of a group G with a monoid M if and only if membership is uniformly decidable for G-automata subsets of M. It follows that a direct product of a free group with any abelian group or commutative monoid has decidable rational subset membership.Comment: 19 page

    On the Structure and Complexity of Rational Sets of Regular Languages

    Get PDF
    In a recent thread of papers, we have introduced FQL, a precise specification language for test coverage, and developed the test case generation engine FShell for ANSI C. In essence, an FQL test specification amounts to a set of regular languages, each of which has to be matched by at least one test execution. To describe such sets of regular languages, the FQL semantics uses an automata-theoretic concept known as rational sets of regular languages (RSRLs). RSRLs are automata whose alphabet consists of regular expressions. Thus, the language accepted by the automaton is a set of regular expressions. In this paper, we study RSRLs from a theoretic point of view. More specifically, we analyze RSRL closure properties under common set theoretic operations, and the complexity of membership checking, i.e., whether a regular language is an element of a RSRL. For all questions we investigate both the general case and the case of finite sets of regular languages. Although a few properties are left as open problems, the paper provides a systematic semantic foundation for the test specification language FQL

    Stallings graphs for quasi-convex subgroups

    Full text link
    We show that one can define and effectively compute Stallings graphs for quasi-convex subgroups of automatic groups (\textit{e.g.} hyperbolic groups or right-angled Artin groups). These Stallings graphs are finite labeled graphs, which are canonically associated with the corresponding subgroups. We show that this notion of Stallings graphs allows a unified approach to many algorithmic problems: some which had already been solved like the generalized membership problem or the computation of a quasi-convexity constant (Kapovich, 1996); and others such as the computation of intersections, the conjugacy or the almost malnormality problems. Our results extend earlier algorithmic results for the more restricted class of virtually free groups. We also extend our construction to relatively quasi-convex subgroups of relatively hyperbolic groups, under certain additional conditions.Comment: 40 pages. New and improved versio

    An approach to computing downward closures

    Full text link
    The downward closure of a word language is the set of all (not necessarily contiguous) subwords of its members. It is well-known that the downward closure of any language is regular. While the downward closure appears to be a powerful abstraction, algorithms for computing a finite automaton for the downward closure of a given language have been established only for few language classes. This work presents a simple general method for computing downward closures. For language classes that are closed under rational transductions, it is shown that the computation of downward closures can be reduced to checking a certain unboundedness property. This result is used to prove that downward closures are computable for (i) every language class with effectively semilinear Parikh images that are closed under rational transductions, (ii) matrix languages, and (iii) indexed languages (equivalently, languages accepted by higher-order pushdown automata of order 2).Comment: Full version of contribution to ICALP 2015. Comments welcom

    Grammars with valuations — a discrete model for self-organization of biopolymers

    Get PDF
    AbstractWe define a new type of formal grammars where the derivation process is regulated by a certain function which evaluates the words. These grammars can be regarded as a model for the molecular replication process with selective character. We locate the associated family of languages in the Chomsky hierarchy, prove some closure properties, and solve some decision problems which are of interest in formal language theory and in biophysics
    • …
    corecore