612 research outputs found

    Membership Privacy for Machine Learning Models Through Knowledge Transfer

    Full text link
    Large capacity machine learning (ML) models are prone to membership inference attacks (MIAs), which aim to infer whether the target sample is a member of the target model's training dataset. The serious privacy concerns due to the membership inference have motivated multiple defenses against MIAs, e.g., differential privacy and adversarial regularization. Unfortunately, these defenses produce ML models with unacceptably low classification performances. Our work proposes a new defense, called distillation for membership privacy (DMP), against MIAs that preserves the utility of the resulting models significantly better than prior defenses. DMP leverages knowledge distillation to train ML models with membership privacy. We provide a novel criterion to tune the data used for knowledge transfer in order to amplify the membership privacy of DMP. Our extensive evaluation shows that DMP provides significantly better tradeoffs between membership privacy and classification accuracies compared to state-of-the-art MIA defenses. For instance, DMP achieves ~100% accuracy improvement over adversarial regularization for DenseNet trained on CIFAR100, for similar membership privacy (measured using MIA risk): when the MIA risk is 53.7%, adversarially regularized DenseNet is 33.6% accurate, while DMP-trained DenseNet is 65.3% accurate.Comment: To Appear in the 35th AAAI Conference on Artificial Intelligence, 202

    A Cautionary Tale: On the Role of Reference Data in Empirical Privacy Defenses

    Full text link
    Within the realm of privacy-preserving machine learning, empirical privacy defenses have been proposed as a solution to achieve satisfactory levels of training data privacy without a significant drop in model utility. Most existing defenses against membership inference attacks assume access to reference data, defined as an additional dataset coming from the same (or a similar) underlying distribution as training data. Despite the common use of reference data, previous works are notably reticent about defining and evaluating reference data privacy. As gains in model utility and/or training data privacy may come at the expense of reference data privacy, it is essential that all three aspects are duly considered. In this paper, we first examine the availability of reference data and its privacy treatment in previous works and demonstrate its necessity for fairly comparing defenses. Second, we propose a baseline defense that enables the utility-privacy tradeoff with respect to both training and reference data to be easily understood. Our method is formulated as an empirical risk minimization with a constraint on the generalization error, which, in practice, can be evaluated as a weighted empirical risk minimization (WERM) over the training and reference datasets. Although we conceived of WERM as a simple baseline, our experiments show that, surprisingly, it outperforms the most well-studied and current state-of-the-art empirical privacy defenses using reference data for nearly all relative privacy levels of reference and training data. Our investigation also reveals that these existing methods are unable to effectively trade off reference data privacy for model utility and/or training data privacy. Overall, our work highlights the need for a proper evaluation of the triad model utility / training data privacy / reference data privacy when comparing privacy defenses

    RobustBench: a standardized adversarial robustness benchmark

    Full text link
    As a research community, we are still lacking a systematic understanding of the progress on adversarial robustness which often makes it hard to identify the most promising ideas in training robust models. A key challenge in benchmarking robustness is that its evaluation is often error-prone leading to robustness overestimation. Our goal is to establish a standardized benchmark of adversarial robustness, which as accurately as possible reflects the robustness of the considered models within a reasonable computational budget. To this end, we start by considering the image classification task and introduce restrictions (possibly loosened in the future) on the allowed models. We evaluate adversarial robustness with AutoAttack, an ensemble of white- and black-box attacks, which was recently shown in a large-scale study to improve almost all robustness evaluations compared to the original publications. To prevent overadaptation of new defenses to AutoAttack, we welcome external evaluations based on adaptive attacks, especially where AutoAttack flags a potential overestimation of robustness. Our leaderboard, hosted at https://robustbench.github.io/, contains evaluations of 120+ models and aims at reflecting the current state of the art in image classification on a set of well-defined tasks in ℓ∞\ell_\infty- and ℓ2\ell_2-threat models and on common corruptions, with possible extensions in the future. Additionally, we open-source the library https://github.com/RobustBench/robustbench that provides unified access to 80+ robust models to facilitate their downstream applications. Finally, based on the collected models, we analyze the impact of robustness on the performance on distribution shifts, calibration, out-of-distribution detection, fairness, privacy leakage, smoothness, and transferability.Comment: The camera-ready version accepted at the NeurIPS'21 Datasets and Benchmarks Track: 120+ evaluations, 80+ models, 7 leaderboards (Linf, L2, common corruptions; CIFAR-10, CIFAR-100, ImageNet), significantly expanded analysis part (calibration, fairness, privacy leakage, smoothness, transferability

    Survey: Leakage and Privacy at Inference Time

    Get PDF
    Leakage of data from publicly available Machine Learning (ML) models is an area of growing significance as commercial and government applications of ML can draw on multiple sources of data, potentially including users' and clients' sensitive data. We provide a comprehensive survey of contemporary advances on several fronts, covering involuntary data leakage which is natural to ML models, potential malevolent leakage which is caused by privacy attacks, and currently available defence mechanisms. We focus on inference-time leakage, as the most likely scenario for publicly available models. We first discuss what leakage is in the context of different data, tasks, and model architectures. We then propose a taxonomy across involuntary and malevolent leakage, available defences, followed by the currently available assessment metrics and applications. We conclude with outstanding challenges and open questions, outlining some promising directions for future research
    • …
    corecore